Ir al contenido

Documat


Stability of generalized Jensen functional equation on a set of measure zero

  • Dimou, Hajira [1] ; Aribou, Youssef [1] ; Chahbi, Abdellatif [1] ; Kabbaj, Samir [1]
    1. [1] Université Ibn-Tofail

      Université Ibn-Tofail

      Kenitra, Marruecos

  • Localización: Proyecciones: Journal of Mathematics, ISSN 0716-0917, ISSN-e 0717-6279, Vol. 35, Nº. 4, 2016, págs. 457-468
  • Idioma: inglés
  • DOI: 10.4067/S0716-09172016000400007
  • Enlaces
  • Resumen
    • Let E is a complex vector space and F is real (or complex ) Banach space. In this paper, we prove the Hyers-Ulam stability for the generalized Jensen functional equation

  • Referencias bibliográficas
    • Citas [1] T. Aoki, On the stability of the linear transformation in Banach spaces, Journal of the Mathematical Society of Japan, 2, pp....
    • [2] J. A. Baker, A general functional equation and its stability, Proceeding of the American Mathematical Society, 133, pp. 1657-1664, (2005).
    • [3] N. Brillouet-Belluot, J. Brzd¸ ek, K. Ciepli` nski, On some recent developments in Ulam’s type stability, Abstract and Applied Analysis,...
    • [4] J. Brzd¸ ek, On a method of proving the Hyers-Ulam stability of functional equations on restricted domains, The Australian Journal of...
    • [5] A. B. Chahbi, A. Charifi, B. Bouikhalene and S. Kabbaj, Nonarchimedean stability of a Pexider K-quadratic functional equation, Arab Journal...
    • [6] A. Chahbi, M. Almahalebi, A. Charifi and S.Kabbaj Generalized Jensen functional equation on restricted domain, Annals of West University...
    • [7] P. W. Cholewa, Remarks on the stability of functional equations, Aequationes mathematicae, 27, pp. 76-86, (1984).
    • [8] J. Chung, Stability of a conditional Cauchy equation on a set of measure zero, Aequationes mathematicae, 87, pp. 391-400, (2014).
    • [9] J. Chung and J. M. Rassias, Quadratic functional equations in a set of Lebesgue measure zero, Journal of Mathematical Analysis and Applications,...
    • [10] J. Chung and J. M. Rassias, On a measure zero Stability problem of a cyclic equation, Bulletin of the Australian Mathematical Society,...
    • [11] S. Czerwik, On the stability of the quadratic mapping in normed spaces, Abhandlungen aus dem Mathematischen Seminar der Universitat at...
    • [12] P. Gavruta, A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings, Journal of Mathematical Analysis...
    • [13] D. H. Hyers, On the stability of the linear functional equation, Proceedings of the National Academy of Sciences, 27, pp. 222-224, (1941).
    • [14] D. H. Hyers and Th. M. Rassias, Approximate homomorphisms, Aequationes Mathematicae, 44, pp. 125-153, (1992).
    • [15] D. H. Hyers, Transformations with bounded n-th differences, Pacific Journal of Mathematics, 11, pp. 591-602, (1961).
    • [16] K. W. Jun and Y. H. Lee, A generalization of the Hyers-Ulam-Rassias stability of Jensen0s equation, Journal of Mathematical Analysis...
    • [17] S. M. Jung, On the Hyers-Ulam stability of the functional equations that have the quadratic property, Journal of Mathematical Analysis...
    • [18] C. F. K. Jung, On generalized complete metric spaces, Bulletin of the American Mathematical Society, 75, pp. 113-116, (1969).
    • [19] R. Ã Lukasik, Some generalization of Cauchy0s and the quadratic functional equations, Aequationes Mathematicae, 83, pp. 75-86, (2012).
    • [20] A. Najati, S. M. Jung, Approximately quadratic mappings on restricted domains, Journal of Inequalities and Applications, (2010).
    • [21] J. C. Oxtoby, Measure and Category, Springer, New-York (1980).
    • [22] Th. M. Rassias, On the stability of linear mapping in Banach spaces, Proceedings of the American Mathematical Society, 72, pp. 297-300,...
    • [23] Th. M. Rassias, On the stability of the functional equations and a problem of Ulam, Acta Applicandae Mathematicae, 62, pp. 23-130, (2000).
    • [24] Th. M. Rassias and P. Semrl, ˇ On the behavior of mappings which do not satisfy Hyers-Ulam stability, Proceedings of the American Mathematical...
    • [25] Th. M. Rassias, and J. Tabor, Stability of Mappings of Hyers-Ulam Type, Hardronic Press, (1994).
    • [26] J. M. Rassias, On the Ulam stability of mixed type mappings on restricted domains, Journal of Mathematical Analysis and Applications,...
    • [27] F. Skof, Local properties and approximations of operators, Rendiconti del Seminario Matematico e Fisico di Milano, 53, pp. 113-129, (1983).
    • [28] H. Stetkær, Functional equations involving means of functions on the complex plane, Aequationes Mathematicae, 56, pp. 47-62, (1998).
    • [29] S. M. Ulam, A Collection of Mathematical Problems, Interscience Publishers, 8(1960)

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno