Ir al contenido

Documat


Energy of strongly connected digraphs whose underlying graph is a cycle

  • Monsalve, Juan [1] ; Rada, Juan [1]
    1. [1] Universidad de Antioquia

      Universidad de Antioquia

      Colombia

  • Localización: Proyecciones: Journal of Mathematics, ISSN 0716-0917, ISSN-e 0717-6279, Vol. 35, Nº. 4, 2016, págs. 395-404
  • Idioma: inglés
  • DOI: 10.4067/S0716-09172016000400003
  • Enlaces
  • Resumen
    • The energy of a digraph is defined as E (D) =∑1n|Re (zk)|, where z1,..., znare the eigenvalues of the adjacency matrix of D. This is a generalization of the concept of energy introduced by I. Gutman in 1978 [3]. When the characteristic polynomial ofa digraph D is ofthe formwhere bo (D) = 1 and bk(D) ≥ 0 for all k, we show thatThis expression for the energy has many applications in the study of extremal values of the energy in special classes of digraphs. In this paper we consider the set D* (Cn) of all strongly connected digraphs whose underlying graph is the cycle Cn, and characterize those whose characteristic polynomial is ofthe form (0.1). As a consequence, we find the extremal values ofthe energy based on (0.2).

  • Referencias bibliográficas
    • Citas [1] R. Cruz, H. Giraldo, J. Rada, An upper bound for the energy of radial digraphs, Linear Alg. Appl. 442, pp. 75-81, (2014).
    • [2] D. Cvetkovic, M. Doob, H. Sachs, Spectra of graphs - Theory and Application, Academic, New York, (1980).
    • [3] I. Gutman, The energy of a graph. Ber. Math.-Statist. Sekt. Forschungsz. Graz 103, pp. 1-22, (1978).
    • [4] X. Li, Y. Shi, I. Gutman, Graph energy, Springer-Verlag, New York, (2012).
    • [5] M. Mateljevic, V. Bozin, I. Gutman, Energy of a polynomial and the Coulson integral formula. J. Math. Chem. 48, pp. 1062-1068, (2010).
    • [6] I. Peña, J. Rada, Energy of digraphs, Lin. Multilin. Alg. 56, pp. 565—579, (2008).
    • [7] J. Rada, I. Gutman, R. Cruz, The energy of directed hexagonal systems, Linear Alg. Appl. 439, pp. 1825—1833, (2013).

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno