Ir al contenido

Documat


On generalization of K-divergence, its order relation with J-divergence and related results

  • Farid, G. [1] ; Rehman, Atiq Ur [1] ; Pecaric, J. [2]
    1. [1] COMSATS Institute of Information Technology

      COMSATS Institute of Information Technology

      Pakistán

    2. [2] University of Zagreb

      University of Zagreb

      Croacia

  • Localización: Proyecciones: Journal of Mathematics, ISSN 0716-0917, ISSN-e 0717-6279, Vol. 35, Nº. 4, 2016, págs. 381-393
  • Idioma: inglés
  • DOI: 10.4067/S0716-09172016000400002
  • Enlaces
  • Resumen
    • In this paper, we give an order relation between J-divergence and generalized K-divergence. By using this order relation we give generalizations ofthe results related to an order relation between J-divergence and K-divergence given by J. Burbea and C. R. Rao. Also we construct class of m-exponentially convexfunctions introducing by nonnegative difference of new order relation.

  • Referencias bibliográficas
    • Citas [1] M. Anwar, G. Farid and J. Pecaric, Generalization of K-divergence and related results, J. Math. Ineq., 5(2), pp. 181—191, (2011).
    • [2] L. Boltzman, Neitere Studien fiber das Warmegleichgewicht unter Gasmolekulen, K. Akad. Wiss. (Wein) Sitzb. 66, 275, (1872).
    • [3] J. Burbea, and C.R. Rao, Entropy differential metric, distance and divergence measures in probability spaces: A unified approach, J. Multivariate...
    • [4] J. Burbea and C. R. Rao, On convexity of some divergence measure based on entropy functions, IEEE Trans. Inform. Theory 28(3), pp. 489—495,...
    • [5] R. Clausius, Abhaudlungen fiber die mechanische Wiirmetheorie Friedrich Vieweg, Braunschweig, (1864).
    • [6] R. G. Gallager, Information theory and reliable communication, Willy, New York, (1968).
    • [7] S. Hussain, On Jensen’s and related inequalities, PhD thesis, Govt. College University, Lahore, 2009. URL: http://eprints.hec.gov.pk/6348/.
    • [8] R. C. Lewonton, The apportionment of human diversity, Evol. Biol. 6, pp. 381—398, (1972).
    • [9] P. C. Mahalanobis, On the generalized distance in statistics, Proc. Natl. Inst. Sci. 2(1), pp. 49—55, (1936).
    • [10] J. Pecaric and J. Peric, Improvements of the Giaccardi and the Petrovic inequality and related Stolarsky type means, An. Univ. Craiova...
    • [11] M. A. Noor, K. I. Noor and M. U. Awan, Geometrically relative convex functions, Appl. Math. Inf. Sci. 8(2), pp. 607—616, (2014).
    • [12] J. E. Pecaric, F. Proschan and Y. L. Tong, Convex functions, partial orderings and statistical applications, Academic Press, New York,...

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno