Ir al contenido

Documat


On some seminormed sequence spaces defined by Orlicz function

  • Aiyub, Mohammad [1]
    1. [1] University of Bahrain

      University of Bahrain

      Baréin

  • Localización: Proyecciones: Journal of Mathematics, ISSN 0716-0917, ISSN-e 0717-6279, Vol. 32, Nº. 3, 2013, págs. 267-280
  • Idioma: inglés
  • DOI: 10.4067/S0716-09172013000300006
  • Enlaces
  • Resumen
    • The sequence space BVa was introduced and studied by Mursaleen. In this paper we extend BVa to BVa (M, p, q,r) on a seminormed complex linear space by using orlicz function. We give various properties and some inclusion relations on this space.

  • Referencias bibliográficas
    • Citas [1] Z. U. Ahmad and M. Mursaleen, An application of banach limits, Proc. Amer. Math. Soc. 103, pp. 244-246, (1983).
    • [2] S. T. Chem, Geometry of Orlicz Spaces, Dissertationes Math. (The Institute of Mathematics, Polish Academy of Sciences) (1996).
    • [3] M. A. Krasnoselskii and Rutickii, Ya. B, Convex Functions and Orlicz Spaces, (Gooningen: P. Nordhoff Ltd.) (1961)(translation)
    • [4] J. Lindenstrauss and L. Tzafriri, On Orlicz sequence spaces, Israel J. Math., 10, pp. 379-390, (1971).
    • [5] G. G. Lorenz, A contribution to the theory of divergent sequences, Acta Math. 80, pp. 167-190, (1948).
    • [6] W. A. Luxemburg, Banach Function Spaces, Thesis (Delft), (1995).
    • [7] L. Maligranda, Orlicz Space and Interpolation, Seminar in Math.5 Campinas (1989).
    • [8] M. Mursaleen, Matrix Transformation Between some new sequence spaces, Houston J. Math., 9, pp. 505-509, (1983).
    • [9] M. Mursaleen, On some new invariant matrix methods of summability, Quart. J. Math., Oxford (2) 34, pp. 77-86, (1983).
    • [10] J. Musielak, Orlicz spaces and modular spaces, Lecture Notes in Math. 1034 (Springer-Verlag) (1983).
    • [11] W. Orlicz, Uber Raume (LM), Bulletin International del Académie Polonaise de Sciences et des Letters, Série A, pp. 93-107, (1936).
    • [12] R. A. Raimi, Invariant means and invariant matrix method of summability, Duke Math. J., 30, pp. 81-94, (1963).
    • [13] M. M. Rao and Z.D.Ren, Theory of Orlicz spaces (New york, Basel, Hong Kong: Marcal Dekker Inc.) (1991)
    • [14] P. Schafer, Infinite matrices and invariant means Proc .Ammer. Math. Soc. 36, pp. 104-110, (1972).
    • [15] A. Wilansky, Summability through Function Alalysis, North-Holland Mathematical Studies, 85 (1984)
    • [16] K.Yosidak, Functional Analysis, Springer- Verlag, Berlian- Heidelberg Newyork., (1971)

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno