Ir al contenido

Documat


On generalized binomial series and strongly regular graphs

  • Moco Mano, Vasco [1] ; Andrade Martins, Enide [2] ; de Almeida Vieira, Luis Antonio [1]
    1. [1] Universidade Do Porto

      Universidade Do Porto

      Santo Ildefonso, Portugal

    2. [2] Universidade de Aveiro

      Universidade de Aveiro

      Vera Cruz, Portugal

  • Localización: Proyecciones: Journal of Mathematics, ISSN 0716-0917, ISSN-e 0717-6279, Vol. 32, Nº. 4, 2013, págs. 393-408
  • Idioma: inglés
  • DOI: 10.4067/S0716-09172013000400007
  • Enlaces
  • Resumen
    • We consider a strongly regular graph, G, and associate a three dimensional Euclidean Jordan algebra, V, to its adjacency matrix A. Then, by considering binomial series of Hadamard powers of the idem-potents of the unique complete system of orthogonal idempotents of V associated to A, we establish feasibility conditions for the existence of strongly regular graphs.

  • Referencias bibliográficas
    • Citas [1] L. W. Beineke, R. J. Wilson and P. J. Cameron, eds., Topics in Algebraic Graph Theory, Cambridge University Press, (2004).
    • [2] R. C. Bose, Strongly regular graphs, partial geometries and partially balanced designs, Pacific J. Math 13, pp. 389-419, (1963). block...
    • [3] A. E. Brouwer and J. H. van Lint, Strongly regular graphs and partial geometries, Enumeration and Design (D. M. Jackson and S. A. Vanstone,...
    • [4] D. M. Cardoso and L. A. Vieira, Euclidean Jordan algebras with strongly regular graphs, Journal of Mathematical Sciences 120, pp. 881-894,...
    • [5] Ph. Delsarte, J. M. Goethals and J. J. Seidel, Bounds for system of lines and Jacobi polynomials, Philips Res. Rep. 30, pp. 91-105, (1975).
    • [6] J. Faraut and A. Kor´anyi, Analysis on Symmetric Cones, Oxford Science Publications, Oxford, (1994).
    • [7] L. Faybusovich, Euclidean Jordan algebras and interior-point algorithms, J. Positivity 1, pp. 331-357, (1997).
    • [8] L. Faybusovich, Linear systems in Jordan algebras and primal-dual interior-point algorithms, Journal of Computational and Applied Mathematics...
    • [9] C. Godsil and G. Royle, Algebraic Graph Theory, Springer-Verlag, New York, (2001).
    • [10] R. Horn and C. R. Johnson, Matrix Analysis, Cambridge University Press, Cambridge, (1985). Cambridge, (1991).
    • [11] X. L. Hubaut, Strongly regular graphs, Discrete Math. 13, pp. 357-381, (1975).
    • [12] P. Jordan, J. V. Neuman, and E. Wigner, On an algebraic generalization of the quantum mechanical formalism, Annals of Mathematics 35,...
    • [13] M. Koecher, The Minnesota Notes on Jordan Algebras and Their Applications, Springer, Berlin, (1999).
    • [14] J. H. V. Lint and R. M. Wilson, A Course in Combinatorics, Cambridge University Press, Cambridge, (2004).
    • [15] V. M. Mano, E. A. Martins and L. A. Vieira, Feasibility conditions on the parameters of a strongly regular graph, Electronic Notes in...
    • [16] V. M. Mano and L. Vieira, Admissibility conditions and asymptotic behavior of strongly regular graphs, International Journal of Mathematical...
    • [17] H. Massan and E. Neher, Estimation and testing for lattice conditional independence models on Euclidean Jordan algebras, Ann. Statist.,...
    • [18] A. Neumaier, Strongly regular graphs with smallest eigenvalue -m, Archiv der Mathematik 33, pp. 392-400, (1979).
    • [19] L. L. Scott Jr., A condition on Higman’s parameters, Notices of Amer. Math. Soc. 20 (1973) A-97 (Abstract 721-20-45).

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno