Ir al contenido

Documat


Birrepresentations in a locally nilpotent variety

  • Arenas, Manuel [1] ; Labra, Alicia [1]
    1. [1] Universidad de Chile

      Universidad de Chile

      Santiago, Chile

  • Localización: Proyecciones: Journal of Mathematics, ISSN 0716-0917, ISSN-e 0717-6279, Vol. 33, Nº. 1, 2014, págs. 123-132
  • Idioma: inglés
  • DOI: 10.4067/S0716-09172014000100009
  • Enlaces
  • Resumen
    • It is known that commutative algebras satisfying the identity of degree four ((yx)x)x + γ((xx)x) = 0, with γ in the field and γ ≠ —1 are locally nilpotent. In this paper we study the birrepresentations of an algebra A that belongs to a variety ν of locally nilpotent algebras. We prove that if the split null extension of a birrepresentation of an algebra A ∈ ν by a vector space M is locally nilpotent, then it is trivial or reducible. As corollaries we get that if A is finitely generated, then every birrepresentation is trivial or reducible and that every finite-dimensional birrepresentation is equivalent to a birrepre-sentation consisting of strictly upper triangular matrices. We also prove that the multiplicative universal envelope of a finitely generated algebra in V is nilpotent, therefore it is finite-dimensional.

  • Referencias bibliográficas
    • Citas [BEL] A. Behn, A. Elduque, A. Labra, A class of Locally Nilpotent Commutative Algebras, International Journal of Algebra and Computation,...
    • [CHL] I. Correa, I. R. Hentzel, A. Labra, Nilpotency of Commutative Finitely Generated Algebras Satisfying L3 x + γLx3 = 0, γ =...
    • [Eil] S. Eilenberg, Extensions of general algebras. Ann. Soc. Polon. Math. 21, pp. 125-134, (1948).
    • [Um] U. Umirbaev, Universal enveloping algebras and derivations of Poisson algebras. Arxiv. 1102 0366v 2 feb. 2011.

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno