Ir al contenido

Documat


Some Umbral Calculus Presentations of the Chan-Chyan-Srivastava Polynomials and the Erkuș-Srivastava Polynomials

  • Srivastava, H. M. [1] ; Nisar, K. S. [3] ; Ahmad Khan, Mumtaz [2]
    1. [1] University of Victoria

      University of Victoria

      Canadá

    2. [2] Aligarh Muslim University

      Aligarh Muslim University

      India

    3. [3] Salman Bin Abdu-Aziz University.
  • Localización: Proyecciones: Journal of Mathematics, ISSN 0716-0917, ISSN-e 0717-6279, Vol. 33, Nº. 1, 2014, págs. 77-90
  • Idioma: inglés
  • DOI: 10.4067/S0716-09172014000100006
  • Enlaces
  • Resumen
    • In their recent investigation involving differential operators for the generalized Lagrange polynomials, Chan et. al. [3] encountered and proved a certain summation identity and several other results for the Lagrange polynomials in several variables, which are popularly known in the literature as the Chan-Chyan-Srivastava polynomials. These multivariable polynomials have been studied systematically and extensively in the literature ever since then (see, for example, [1], [4], [9], [11], [12] and [13]). In the present paper, we investigate umbral calculus presentations ofthe Chan-Chyan-Srivastava polynomials and also of their substantially more general form, the Erkus-Srivastava polynomials [9]. Some other closely-related results are also considered.

  • Referencias bibliográficas
    • Citas [1] A. Altın and E. Erkus, On a multivariable extension of the LagrangeHermite polynomials, Integral Transforms Spec. Funct. 17, pp....
    • [2] L. C. Andrews, Special Functions for Engineers and Applied Mathematicians, Macmillan Company, New York, (1985).
    • [3] W.-C. C. Chan, C.-J. Chyan and H. M. Srivastava, The Lagrange polynomials in several variables, Integral Transforms Spec. Funct. 12, pp....
    • [4] K.-Y. Chen, S.-J. Liu and H. M. Srivastava, Some new results for the Lagrange polynomials in several variables, ANZIAM J. 49, pp. 243—258,...
    • [5] G. Dattoil, P. E. Ricci and C. Cesarano, Monumbral polynomials and the associated formalism, Integral Transforms Spec. Funct. 13, pp....
    • [6] G. Dattoil, P. E. Ricci and C. Cesarano, The Lagrange polynomials, the associated generalizations, and the umbral calculus, Integral Transforms...
    • [7] G. Dattoil, P. E. Ricci and C. Cesarano, Beyond the monomiality: The monumbrality principle, J. Comput. Anal. Appl. 6, pp. 77—83, (2004).
    • [8] A. Erdelyi, W. Magnus, F. Oberhettinger and F. G. Tricomi, Higher Transcendental Functions, Vol. III, McGraw-Hill Book Company, New York,...
    • [9] E. Erkus and H. M. Srivastava, A unified presentation of some families of multivariable polynomials, Integral Transforms Spec. Funct....
    • [10] M. A. Khan and A. K. Shukla, On Lagrange’s polynomials of three variables, Proyecciones J. Math. 17, pp. 227—235, (1998).
    • [11] S.-J. Liu, Bilateral generating functions for the Lagrange polynomials and the Lauricella functions, Integral Transforms Spec. Funct....
    • [12] S.-J. Liu, C.-J. Chyan, H.-C. Lu and H. M. Srivastava, Bilateral generating functions for the Chan-Chyan-Srivastava polynomials and the...
    • [13] S.-J. Liu, S.-D. Lin, H. M. Srivastava and M.-M. Wong, Bilateral generating functions for the Erkus-Srivastava polynomials and the generalized...
    • [14] S. Roman, The Umbral Calculus, Academic Press, New York and London, (1984).
    • [15] H. M. Srivastava and H. L. Manocha, A Treatise on Generating Functions, Halsted Press (Ellis Horwood Limited, Chichester), John Wiley...

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno