Ir al contenido

Documat


On Zweier I-convergent sequence spaces.

  • Khan, Vakeel A. [1] ; Ebadullah, Khalid [1] ; Aligarh, Yasmeen [1]
    1. [1] Aligarh Muslim University

      Aligarh Muslim University

      India

  • Localización: Proyecciones: Journal of Mathematics, ISSN 0716-0917, ISSN-e 0717-6279, Vol. 33, Nº. 3, 2014, págs. 259-276
  • Idioma: inglés
  • DOI: 10.4067/S0716-09172014000300003
  • Enlaces
  • Resumen
    • In this article we introduce the Zweier I-convergent sequence spaces . We prove the decomposition theorem and study topo-logical, algebraic properties and have established some inclusion relations of these spaces.

  • Referencias bibliográficas
    • Citas [1] Altay, B.,Basar, F. and Mursaleen. On the Euler sequence space which‏ include the spaces lp and l∞, Inform.Sci., 176 (10), pp....
    • [2] Basar, F. and Altay, B. On the spaces of sequences of p-bounded variation and related matrix mappings. Ukrainion Math. J. 55. (2003).‏
    • [3] Buck, R. C.: Generalized Asymptotic Density, Amer. J. Math. 75, pp.‏ 335-346, (1953).‏
    • [4] Connor, J. S.: it The statistical and strong P-Cesaro convergence of‏ sequences,Analysis. 8(1988),47-63.‏
    • [5] Connor, J. S. : On strong matrix summability with respect to a modulus‏ and statistical convergence, Cnad. Math. Bull. 32, pp. 194-198,...
    • [6] Connor, J., Fridy, J. A. and Kline, J. Statistically Pre-Cauchy sequence,‏ Analysis. 14, pp. 311-317, (1994).‏
    • [7] Fast, H. : Sur la convergence statistique, Colloq. Math. 2, pp. 241-244,‏ (1951).‏
    • [8] Kamthan, P. K. and Gupta, M. : Sequence spaces and series. Marcel‏ Dekker Inc, New York.(1980).
    • [9] Khan, V. A. and Ebadullah, K. On some I-Convergent sequence spaces‏ defined by a modullus function. Theory and Application of Mathematiccs...
    • [10] Khan, V. A., Ebadullah, K and Ahmad, A. I-Pre-Cauchy Sequences‏ and Orlicz Function. Journal of Mathematical Analysis. 3 (1), pp. 21-26,‏...
    • [11] Khan, V.A. and Ebadullah,K.I-Convergent difference sequence spaces‏ defined by a sequence of moduli. J. Math. Comput.Sci. 2 (2), pp....
    • [12] Kostyrko, P., Salat, T.,Wilczynski,W.I-convergence. Real Analysis Exchange, 26 (2), pp. 669-686, (2000).‏
    • [13] Malkowsky, E. Recent results in the theory of matrix transformation‏ in sequence spaces. Math. Vesnik. (49), pp. 187-196, (1997).‏
    • [14] Ng, P., N. and Lee P., Y. Cesaro sequence spaces of non-absolute type.‏ Comment. Math. Pracc. Math. 20 (2), pp. 429-433, (1978).‏
    • [15] Salat,T., Tripathy, B. C., Ziman, M. On some properties of Iconvergence. Tatra Mt. Math. Publ., (28), pp. 279-286, (2004).‏
    • [16] Salat, T., Tripathy, B. C.,Ziman,M. On I-convergence field. Ital. J.‏ Pure Appl. Math., (17), pp. 45-54 (2005).‏
    • [17] Schoenberg, I. J. : The integrability of certain functions and related‏ summability methods, Amer. Math. Monthly. 66 : pp. 361-375, (1959).‏
    • [18] Sengönül, M. On The Zweier Sequence Space, DEMONSTRATIO‏ MATHEMATICA, Vol.XL No.(1), pp. 181-196, (2007).‏
    • [19] Tripathy, B. C. and Hazarika, B. Paranorm I-Convergent sequence‏ spaces, Math Slovaca. 59 (4), pp. 485-494. (2009).‏
    • [20] Tripathy, B. C. and Hazarika,B. Some I-Convergent sequence spaces‏ defined by Orlicz function., Acta Mathematicae Applicatae Sinica....
    • [21] Tripathy, B. C. and Hazarika, B. I -convergent sequence spaces associated with multiplier sequence spaces ; Mathematical Inequalities...
    • [22] Tripathy, B. C. and Mahanta, S. On Acceleration convergence of sequences ; Journal of the Franklin Institute, 347, pp. 591-598, (2010).‏
    • [23] Tripathy,B.C. and Hazarika, B. I-monotonic and I-Convergent sequences, Kyungpook Math. Journal. 51 (2) (2011), pp. 233-239, (2011).‏
    • [24] Tripathy, B. C. Sen, M. and Nath, S. I-Convergence in probabilistic‏ n-normed space ; Soft Comput, 16, pp. 1021-1027, (2012).‏
    • [25] Tripathy, B. C. Hazarika,B and Choudhry, B. Lacunary I-Convergent‏ sequences, Kyungpook Math. Journal. 52 (4), pp. 473-482, (2012).‏
    • [26] Tripathy, B. C. and Sharma, B. On I-Convergent double sequences of fuzzy real numbers, Kyungpook Math. Journal. 52 (2), pp. 189-200,...
    • [27] Tripathy, B. C. and Ray, G. C. Mixed fuzzy ideal topological spaces ; Applied mathematics and Computaions; 220, pp. 602-607, (2013).

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno