Ir al contenido

Documat


Statistically pre-Cauchy Fuzzy real-valued sequences defined by Orlicz function

  • Dutta, Amar Jyoti [2] ; Tripathy, Binod Chandra [1]
    1. [1] Institute of Advanced Study in Science and Technology

      Institute of Advanced Study in Science and Technology

      India

    2. [2] Pragjyotish College.
  • Localización: Proyecciones: Journal of Mathematics, ISSN 0716-0917, ISSN-e 0717-6279, Vol. 33, Nº. 3, 2014, págs. 235-243
  • Idioma: inglés
  • DOI: 10.4067/S0716-09172014000300001
  • Enlaces
  • Resumen
    • In this articlewehavedefined statistically pre-Cauchy sequence of fuzzy real numbers defined by Orlicz function. We have proved a necessary and sufficient condition for a sequence X =(Xk) of fuzzy real numbers to be statistically pre-Cauchy. We have also established some other results.

  • Referencias bibliográficas
    • Citas [1] H. Altinok, Y. Altin, and M. Et: Lacunary almost statistical convergence of fuzzy numbers, Thai J. Math., 2 (2), pp. 265-274,...
    • [2] J. S. Connor, J. Fridy and J. Kline: Statistically Pre-Cauchy Sequences,‏ Analysis, 14, pp. 311-317, (1994).‏
    • [3] A. J. Dutta: Lacunary p-absolutely summable sequence of fuzzy real‏ number, Fasc. Math., 46, pp. 58-64, (2011).‏
    • [4] A. Esi and M. Et: Some new sequence spaces defined by a sequence‏ of Orliccz functions, Indian j. Pure Appl. Math., 31 (8), pp. 967-972,‏...
    • [5] M. Et: On some new Orlicz sequence spaces, J. Analysis, 9, pp. 21-28,‏ (2001).‏
    • [6] A. Esi: On some new classes of sequences of fuzzy numbers, Int. J.‏ Math. Anal., 2 (17), pp. 837-844, (2008).
    • [7] A. Esi: Generalized Difference Sequence Spaces Defined by Orlicz Functions, Gen. Math., 17 (2), pp. 53-66, (2009).‏
    • [8] H. Fast: Sur la Convergence Statistique, Colloq. Math., 2, pp. 241-244,‏ (1951).‏
    • [9] J. A. Fridy: On Statistical Convergence, Anal., 5, pp. 301-313, (1985).‏
    • [10] V. A. Khan and Q. M. Lohani: Statistically Pre-Cauchy Sequences‏ and Orlicz Functions, Southeast Asian Bull. Math., 31, pp. 1107-1112,‏...
    • [11] M. Mursaleen and M. Ba¸ sarir: On some new sequence spaces of fuzzy‏ numbers, Indian J. Pure Appl. Math., 34 (9), pp. 1351-1357, (2003).‏
    • [12] E. Savas: A note on sequence of Fuzzy numbers,Inf. Sc., 124, pp. 297-300, (2000).
    • [13] I. J. Schoenberg: The integrability of certain functions and related‏ summability methods, Am. Math. Mon., 66, pp. 361-375, (1959).‏
    • [14] B. C. Tripathy and A. J. Dutta: On fuzzy real-valued double sequence‏ spaces, Math. Comput. Modelling, 46, pp. (9-10), pp. 1294-1299,...
    • [15] A. J. Dutta and B. C. Tripathy : On I-acceleration convergence of‏ sequences of fuzzy real numbers, Math. Modelling Anal., 17 (4), pp....
    • [16] B. C. Tripathy and A. J. Dutta: Lacunary bounded variation sequence‏ of fuzzy real numbers, J. Intell. Fuzzy Syst., 24 (1), pp. 185-189,...
    • [17] B. C. Tripathy and B. Sarma: Sequence spaces of fuzzy real numbers‏ defined by Orlicz functions, Math. Slov. 58 (5), pp. 621-628, (2008).‏
    • [18] B. C. Tripathy and B. Sarma: On I-convergent double sequences of‏ fuzzy real numbers, Kyungpook Math. J., 52 (2), pp. 189-200, (2012)‏.

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno