Ir al contenido

Documat


Topological indices of Kragujevac trees

  • Cruz, Roberto [1] ; Gutman, Iván [2] ; Rada, Juan [1]
    1. [1] Universidad de Antioquia

      Universidad de Antioquia

      Colombia

    2. [2] University of Kragujevac

      University of Kragujevac

      Opština Kragujevac, Serbia

  • Localización: Proyecciones: Journal of Mathematics, ISSN 0716-0917, ISSN-e 0717-6279, Vol. 33, Nº. 4, 2014, págs. 471-482
  • Idioma: inglés
  • DOI: 10.4067/S0716-09172014000400008
  • Enlaces
  • Resumen
    • We find the extremal values of the energy, the Wiener index and several vertex-degree-based topological indices over the set of Kragujevac trees with the central vertex of fixed degree.

  • Referencias bibliográficas
    • Citas [1] C. A. Coulson, On the calculation of the energy in unsaturated hydrocarbon molecules, Proc. Cambridge Phil. Soc., 36, pp. 201-203,...
    • [2] A. A. Dobrynin, R. Entriguer and I. Gutman, Wiener index of trees:‏ Theory and applications, Acta Appl. Math, 66, pp. 211-249, (2001).‏
    • [3] E. Estrada, L. Torres, L. Rodríguez and I. Gutman, An atom-bond‏ connectivity index: Modelling the enthalpy of formation of alkanes,‏...
    • [4] B. Furtula, A. Graovac and D. Vukicevic, Augmented Zagreb index,‏ J. Math. Chem., 48, pp. 370-380, (2010).‏
    • [5] B. Furtula, I. Gutman and M. Dehmer, On structure-sensitivity of‏ degree-based topological indices, Appl. Math. Comput., 219, pp. 8973-8978,...
    • [6] B. Furtula, I. Gutman, M. Ivanovic and D. Vukicevic, Computer search‏ for trees with minimal ABC index, Appl. Math. Comput., 219, pp....
    • [7] I. Gutman, Acyclic systems with extremal Huckel π-electron energy,‏ Theor. Chim. Acta, 45, pp. 79-87, (1977).‏
    • [8] I. Gutman, Degree-based topological indices, Croat. Chem. Acta, 86,‏ pp. 351-361, (2013).‏
    • [9] I. Gutman, The energy of a graph, Ber. Math.-Statist. Sekt.‏ Forschungsz. Graz, 103, pp. 1-22, (1978).‏
    • [10] I. Gutman, Topology and stability of conjugated hydrocarbons. The‏ dependence of total π-electron energy on molecular topology, J. Serb.‏...
    • [11] I. Gutman and B. Furtula, Trees with smallest atom-bond connectivity‏ index, MATCH Commun. Math. Comput. Chem., 68, pp. 131-136,‏ (2012).‏
    • [12] I. Gutman, B. Furtula and M. Ivanovic, Notes on trees with minimal atom-bond connectivity index, MATCH Commun. Math. Comput. Chem., 67,...
    • [13] I. Gutman and N. Trinajstic, Graph theory and molecular orbitals.‏ Total π-electron energy of alternant hydrocarbons, Chem. Phys. Lett.,‏...
    • [14] B. Horoldagva and I. Gutman, On some vertex-degree-based graph‏ invariants, MATCH Commun. Math. Comput. Chem., 65, pp. 723-730, (2011).‏
    • [15] S. A. Hosseini, M. B. Ahmadi and I. Gutman, Kragujevac Trees with‏ minimal Atom-Bond Connectivity Index, MATCH Commun. Math.‏ Comput....
    • [16] X. Li, Y. Shi and I. Gutman, Graph Energy, Springer, New York,‏ (2012).‏
    • [17] M. Randic, On characterization of molecular branching, J. Am. Chem.‏ Soc., 97, pp. 6609-6615, (1975).‏
    • [18] A. Schwenk, Computing the characteristic polynomial of a graph, in:‏ Lectures Notes in Mathematics, vol 406, Springer-Verlag, Berlin,...
    • [19] D. Vukicevic and B. Furtula, Topological index based on the ratios of‏ geometrical and arithmetical means of end-vertex degrees of edges,...
    • [20] H. Wiener, Structural determination of paraffin boiling points, J.‏ Amer. Chem. Soc., 69, pp. 17-20, (1947).‏
    • [21] B. Zhou and N. Trinajstic, On a novel connectivity index, J. Math.‏ Chem., 46, pp. 1252-1270, (2009).‏
    • [22] L. Zhong, The harmonic index for graphs,Appl. Math. Lett., 25, pp. 561-566, (2012).

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno