Ir al contenido

Documat


Fréchet differentiation between Menger probabilistic normed spaces

  • Eghbali, N. [1]
    1. [1] University of Mohaghegh Ardabili

      University of Mohaghegh Ardabili

      Irán

  • Localización: Proyecciones: Journal of Mathematics, ISSN 0716-0917, ISSN-e 0717-6279, Vol. 33, Nº. 4, 2014, págs. 415-435
  • Idioma: inglés
  • DOI: 10.4067/S0716-09172014000400005
  • Enlaces
  • Resumen
    • In this paper, we define and study Menger weakly and strongly P-convergent sequences and then Menger probabilistic continuity. We also display Frechet differentiation of nonlinear operators between Menger probabilistic normed spaces.

  • Referencias bibliográficas
    • Citas [1] C. Alsina, B. Schweizer and A. Sklar, On the definition of a probabilistic normed space, Aequationes Math. 46, pp. 91—98, (1993).
    • [2] T. Bag and S. K. Samanta, Finite dimensional fuzzy normed linear spaces, The journal of Fuzzy Mathematics, 11, pp. 687—705, (2003).
    • [3] B. Buffoni and J. Toland, Analytic theory of global bifurcation, Princeton Oxford: Princeton University Press; (2003).
    • [4] S. S. Chang, Y. J. Cho and S. M. Kang, Probabilistic metric spaces and nonlinear operator theory, Sichuan University Press, Chengdu, (1994).
    • [5] M. S. El Naschie, On the uncertainly of Cantorian geometry and twoslit experiment, Choas, Solitions and Fractals, 9, pp. 517—529, (1998).
    • [6] M. S. El Naschie, On the unification of heterotic strings, M theory and ε∞ theory, Choas, Solitions and Fractals, 11, pp. 2397—2408, (2000).
    • [7] K. Mengar, Statistical metrics, Proc. Nat. Acad. Sci. 28, pp. 535—537, (1942).
    • [8] M. Mursaleen and Q. M. Danish Lohani, Statistical limit superior and limit inferior in probabilistic normed spaces, Filomat, 25 (3), pp....
    • [9] M. Mursaleen and S. A. Mohiuddine, On ideal convergence of double sequences in probabilistic normed spaces, Math. Reports, 12 (64) (4),...
    • [10] M. Mursaleen and S. A. Mohiuddine, Nonlinear operators between intuituinistic fuzzy normed spaces and Frechet derivative, Chaos, solitions...
    • [11] A. N. Serstnev, On the notion of a random normed space, Dokl. Akad. Nauk. 149, pp. 280—283, (1963).

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno