Ir al contenido

Documat


Stability in totally nonlinear neutral differential equations with variable delay using fixed point theory

  • Ardjouni, Abdelouaheb [2] ; Djoudi, Ahcene [1]
    1. [1] Badji Mokhtar University

      Badji Mokhtar University

      Argelia

    2. [2] University Souk Ahras.
  • Localización: Proyecciones: Journal of Mathematics, ISSN 0716-0917, ISSN-e 0717-6279, Vol. 34, Nº. 1, 2015, págs. 25-44
  • Idioma: inglés
  • DOI: 10.4067/S0716-09172015000100003
  • Enlaces
  • Resumen
    • The totally nonlinear neutral differential equation(d/ dt) (x(t))=−a(t)g(x(t−τ (t))) + (d/ dt)( G(t,x(t−τ (t)))),with variable delay τ(t) ≥ 0 is investigated. We find suitable conditions for t, a, g and G so that for a given continuous initial function 0 a mapping P for the above equation can be defined on a carefully chosen complete metric space S0ψ ; and in which P possesses a unique fixed point. The final result is an asymptotic stability theorem for the zero solution with a necessary and sufficient condition. The obtained theorem improves and generalizes previous results due to Becker and Burton [6]. An example is given to illustrate our main result.

  • Referencias bibliográficas
    • Citas [1] A. Ardjouni, A. Djoudi, Fixed points and stability in linear neutral differential equations with variable delays. Nonlinear Analysis...
    • [2] A. Ardjouni, A. Djoudi, Stability in nonlinear neutral differential with variable delays using fixed point theory, Electronic Journal...
    • [3] A. Ardjouni, A. Djoudi, Fixed point and stability in neutral nonlinear differential equations with variable delays, Opuscula Mathematica,...
    • [4] A. Ardjouni, A. Djoudi, I. Soualhia, Stability for linear neutral integrodifferential equations with variable delays, Electronic journal...
    • [5] A. Ardjouni, A. Djoudi, Fixed points and stability in nonlinear neutral Volterra integro-differential equations with variable delays,...
    • [6] L. C. Becker, T. A. Burton, Stability, fixed points and inverse of delays, Proc. Roy. Soc. Edinburgh 136A, pp. 245-275, (2006).
    • [7] T. A. Burton, Fixed points and stability of a nonconvolution equation, Proceedings of the American Mathematical Society 132, pp. 3679—...
    • [8] T. A. Burton, Stability by Fixed Point Theory for Functional Differential Equations, Dover Publications, New York, (2006).
    • [9] T. A. Burton, Liapunov functionals, fixed points, and stability by Krasnoselskii’s theorem, Nonlinear Studies 9, pp. 181—190, (2001).
    • [10] T. A. Burton, Stability by fixed point theory or Liapunov’s theory: A comparison, Fixed Point Theory 4, pp. 15—32, (2003).
    • [11] T. A. Burton, T. Furumochi, A note on stability by Schauder’s theorem, Funkcialaj Ekvacioj 44, pp. 73—82, (2001).
    • [12] T. A. Burton, T. Furumochi, Fixed points and problems in stability theory, Dynamical Systems and Applications 10, pp. 89—116, (2001).
    • [13] T. A. Burton, T. Furumochi, Asymptotic behavior of solutions of functional differential equations by fixed point theorems, Dynamic Systems...
    • [14] T. A. Burton, T. Furumochi, Krasnoselskii’s fixed point theorem and stability, Nonlinear Analysis 49, pp. 445—454, (2002).
    • [15] Y. M. Dib, M. R. Maroun, Y. N. Raffoul, Periodicity and stability in neutral nonlinear differential equations with functional delay,...
    • [16] A. Djoudi, R. Khemis, Fixed point techniques and stability for neutral nonlinear differential equations with unbounded delays, Georgian...
    • [17] C. H. Jin, J. W. Luo, Stability of an integro-differential equation, Computers and Mathematics with Applications 57, pp. 1080-1088, (2009).
    • [18] C. H. Jin, J. W. Luo, Stability in functional differential equations established using fixed point theory, Nonlinear Anal. 68, pp. 3307-...
    • [19] C. H. Jin, J. W. Luo, Fixed points and stability in neutral differential equations with variable delays, Proceedings of the American...
    • [20] J. Luo, Fixed points and exponential stability for stochastic Volterra— Levin equations, Journal of Computational and Applied Mathematics,...
    • [21] Y. N. Raffoul, Stability in neutral nonlinear differential equations with functional delays using fixed-point theory, Math. Comput. Modelling...
    • [22] D. R. Smart, Fixed point theorems, Cambridge Tracts in Mathematics, No. 66. Cambridge University Press, London-New York, (1974).
    • [23] J. A. Yorke, Asymptotic stability for one dimensional differential delay equations, J. Diff. Eqns 7, pp. 189-202, (1970).
    • [24] B. Zhang, Fixed points and stability in differential equations with variable delays, Nonlinear Anal. 63, pp. e233—e242, (2005).
    • [25] B. Zhang, Contraction mapping and stability in a delay differential equation, Dynamical systems and appl. 4, pp. 183—190, (2004).

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno