Ir al contenido

Documat


A note on complementary tree domination number of a tree

  • Krishnakumari, B. [1] ; Venkatakrishnan, Y. B. [1]
    1. [1] SASTRA University

      SASTRA University

      India

  • Localización: Proyecciones: Journal of Mathematics, ISSN 0716-0917, ISSN-e 0717-6279, Vol. 34, Nº. 2, 2015, págs. 127-136
  • Idioma: inglés
  • DOI: 10.4067/S0716-09172015000200002
  • Enlaces
  • Resumen
    • A complementary tree dominating set of a graph G, is a set D of vertices of G such that D is a dominating set and the induced sub graph (V \ D) is a tree. The complementary tree domination number of a graph G, denoted by γctd(G), is the minimum cardinality of a complementary tree dominating set of G. An edge-vertex dominating set of a graph G is a set D of edges of G such that every vertex of G is incident with an edge of D or incident with an edge adjacent to an edge of D. The edge-vertex domination number of a graph, denoted by γev (G), is the minimum cardinality of an edge-vertex dominating set of G. We characterize trees for which γ(T) = γctd(T) and  γctd(T) = γev(T) + 1.

  • Referencias bibliográficas
    • Citas [1] T. Haynes, S. Hedetniemi and P. Slater, Fundamentals of Domination in Graphs, Marcel Dekker, New York, (1998).
    • [2] T. Haynes, S. Hedetniemi and P. Slater (eds.), Domination in Graphs: Advanced Topics, Marcel Dekker, New York, (1998).
    • [3] X. Hou, A characterization of trees with equal domination and total domination numbers, Ars Combinatoria 97A, pp. 499—508, (2010).
    • [4] M. Krzywkowski, On trees with double domination number equal to 2-domination number plus one, Houston Journal of Mathematics 39, pp. 427-440,...
    • [5] S. Muthammai, M. Bhanumathi and P. Vidhya, Complementary tree Domination number of a graph, International Mathematical Forum 6, pp. 1273—1282,...
    • [6] J. Peters, Theoretical and Algorithmic Results on Domination and connectivity, Ph. D. Thesis, Clemson University, (1986).

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno