Ir al contenido

Documat


On Jensen’s and the quadratic functional equations with involutions

  • Fadli, Brahim [1] ; Chahbi, Abdellatif [1] ; El-Fassi, Iz-Iddine [1] ; Kabbaj, Samir [1]
    1. [1] Université Ibn-Tofail

      Université Ibn-Tofail

      Kenitra, Marruecos

  • Localización: Proyecciones: Journal of Mathematics, ISSN 0716-0917, ISSN-e 0717-6279, Vol. 35, Nº. 2, 2016, págs. 213-223
  • Idioma: inglés
  • DOI: 10.4067/S0716-09172016000200006
  • Enlaces
  • Resumen
    • We determine the Solutions f : S → H of the generalized Jensen’s functional equationf( x + σ(y)) + f( x + τ(y)) = 2f(x), x , y∈ Sand the solutions f : S → H of the generalized quadratic functional equationf ( x + σ(y)) + f (x + τ(y)) = 2f (x) + 2f (y),    x, y ∈ S,where S is a commutative semigroup, H is an abelian group (2-torsion free in the first equation and uniquely 2-divisible in the second) and σ, τ are two involutions of S.

  • Referencias bibliográficas
    • Citas [1] J. Aczel and J. Dhombres, Functional equations in several variables,‏ Cambridge University Press, New York (1989).‏
    • [2] A. Chahbi, B. Fadli, S. Kabbaj, A generalization of the symmetrized‏ multiplicative Cauchy equation, Acta Math. Hungar., pp. 1-7, (2016).‏
    • [3] J. K. Chung, B. R. Ebanks, C. T. Ng and P. K. Sahoo, On a quadratic‏ trigonometric functional equation and some applications, Trans. Amer.‏...
    • [4] B. Fadli, D. Zeglami and S. Kabbaj, On a Gajda’s type quadratic‏ equation on a locally compact abelian group, Indagationes Math., 26,‏...
    • [5] B. Fadli, D. Zeglami and S. Kabbaj, A variant of Jensen’s functional‏ equation on semigroups, Demonstratio Math., to appear.‏
    • [6] P. de Place Friis and H. Stetkær, On the quadratic functional equation‏ on groups, Publ. Math. Debrecen 69, pp. 65-93, (2006).‏
    • [7] S-M. Jung, Quadratic functional equations of Pexider type, J. Math.‏ & Math. Sci., 24, pp. 351-359, (2000).‏
    • [8] P. Kannappan, Quadratic functional equation and inner product‏ spaces, Results Math., 27, pp. 368-372, (1995).‏
    • [9] P. Kannappan, Functional equations and inequalities with applications, Springer, New York, (2009).
    • [11] C. T. Ng, Jensen’s functional equation on groups, II, Aequationes‏ Math. 58, pp. 311-320, (1999).‏
    • [12] C. T. Ng, Jensen’s functional equation on groups, III, Aequationes‏ Math. 62, pp. 143-159, (2001).‏
    • [13] C. T. Ng, A Pexider-Jensen functional equation on groups, Aequationes Math. 70, pp. 131-153, (2005).‏
    • [14] J. C. Parnami and H.L. Vasudeva, On Jensen’s functional equation,‏ Aequationes Math. 43, pp. 211-218, (1992).‏
    • [15] Th. M. Rassias, Inner Product Spaces and Applications, Pitman Research Notes in Mathematics Series, Addison Wesley Longman Ltd, 376,...
    • [16] P. Sinopoulos, Functional equations on semigroups, Aequationes‏ Math., 59, pp. 255-261, (2000).‏
    • [17] H. Stetkær, Functional equations on abelian groups with involution,‏ Aequationes Math. 54, pp. 144-172, (1997).‏
    • [18] H. Stetkær, On Jensen’s functional equation on groups, Aequationes‏ Math. 66, pp. 100-118, (2003).‏
    • [19] H. Stetkær, Functional Equations on Groups, World Scientific Publishing Co, Singapore, (2013).‏

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno