Ir al contenido

Documat


Matrix transformation on statistically convergent sequence spaces of interval number sequences

  • Debnath, Shyamal [1] ; Saha, Subrata [1]
    1. [1] Tripura University

      Tripura University

      India

  • Localización: Proyecciones: Journal of Mathematics, ISSN 0716-0917, ISSN-e 0717-6279, Vol. 35, Nº. 2, 2016, págs. 187-195
  • Idioma: inglés
  • DOI: 10.4067/S0716-09172016000200004
  • Enlaces
  • Resumen
    • The main purpose of this paper is to introduce the necessary and sufficient conditions for the matrix of interval numbers Ā = (ānk) such that Ā-transform of x = (xk) belongs to the sets c0S(i) ∩ ℓi∞, cS(i) ∩ ℓi∞, where in particular x ∈ c0S(i) ∩ ℓi∞ and x ∈ cS(i) ∩ ℓi∞ respectively.

  • Referencias bibliográficas
    • Citas [1] A. Esi, Strongly almost λ- convergence and statistically almost λ-convergence of interval numbers, Scientia Magna 7 (2): pp. 117-122,...
    • [2] A. Esi, A new class of interval numbers, J. Qafqaz Univ. 31: pp. 98-102, (2011)
    • [3] A. Esi, Lacunary sequence spaces of interval numbers, Thai J. Math.,‏ 10(2): pp. 445-451, (2012).‏
    • [4] A. Esi, λ-Sequence spaces of interval numbers, Appl. Math. and Inform. Sci., 8(3): pp. 1099-1102, (2014).‏
    • [5] A. Esi, Double lacunary sequence spaces of double sequence of interval‏ numbers, Proyecciones, 31(1): pp. 297-306, (2012).‏
    • [6] A. Esi, Statistical and lacunary statistical convergence of interval numbers in topological groups, Acta Scientarium. Techno., 36(3):...
    • [7] A. Esi and N. Braha, On asymptotically -statistical equivalent sequences of interval numbers,Acta Scientarium. Techno., 35(3): pp. 515-520,...
    • [8] A. Esi and A. Esi, Asymptotically lacunary statistically equivalent‏ sequences of interval numbers ,Int. J. Math. Appl., 1(1): pp. 43-48,...
    • [9] A. Esi and B. Hazarika, Some ideal convergence of double-interval‏ number sequences defined by Orlicz function, Global J. Math.‏ Anal.,1(3):...
    • [10] A. Zygmund, Trigonometric Series, Cambridge University Press, Cambridge, UK. (1979).‏
    • [11] B.C. Tripathy, Matrix transformation between some classes of sequences, J. Math. Anal. Appl., 206: pp. 448-450, (1997).‏
    • [12] B.C. Tripathy, Matrix transformation between series and sequences,‏ Bull. Malaysian Math. Soc. (Second series), 21: pp. 17—20, (1998).‏
    • [13] F. Basar, Summability theory and its applications, Bentham Science, (2011)
    • [14] H. Cakalli, A study on statistical convergence, Funct. Anal. Approx.‏ Comput., 1(2): pp. 19-24, (2009).‏
    • [15] H. Fast, Sur la convergence statistique, Colloq. Math. 2: pp. 241-244, (1951).
    • [16] H. I. Miller, A measure theoretical subsequence characterization of‏ statical convergence, Trans. Am. Math. Soc., 347(5): pp. 1811-1819,...
    • [17] H. Steinhus,Sur la convergence ordinaire et la convergence asymptotique, Colloq. Math. 2: pp. 73-74, (1951).‏
    • [18] I.J. Maddox, On strong almost cconvergence, Math. Proc. Camb. Philos. Soc., 85(2): pp. 345-350, (1979).‏
    • [19] I. J. Schoenberg, The integrability of certain functions and related‏ summability methods, Am. Math. Mon., 66(5): pp. 361-375, (1959).‏
    • [20] J. A. Fridy, On statistical convergence,Analysis, 5(4): pp. 301-313, (1985).
    • [21] Kuo-Ping Chiao, Fundamental properties of interval vector max-norm,‏ Tamsui Oxford J. Math. Sci., 18(2): pp. 219-233, (2002).‏
    • [22] M. Sengönül and A.Eryılmaz, On the sequence spaces of interval numbers, Thai J. Math, 8(3): pp. 503-510, (2010).‏
    • [23] P. S. Dwyer, Linear Computation, New York, Wiley, (1951).‏
    • [24] P.S. Dwyer, Erros of matrix computation, simultaneous equations and‏ eigenvalues, National Bureu of Standarts, Applied Mathematics Series,‏...
    • [25] P. S. Fischer, Automatic propagated and round-off error analysis, Paper presented at the 13th national meeting of the Association for...
    • [26] R. E. Moore, Automatic error analysis in digital computation, LSMD-48421,Lockheed Missiles and Space Company, (1959).‏
    • [27] R. E. Moore and C. T. Yang, Theory of an interval algebra and its application to numeric analysis, RAAG Memories II, Gaukutsu Bunken‏...
    • [28] S. Debnath, A. J. Dutta and S. Saha, Regular matrix of interval‏ numbers based on fibonacci numbers, Afr. Mat., 26(7): pp. 1379-1385,...
    • [29] S. Debnath, B. Sarma and S. Saha, On some sequence spaces of‏ interval vectors, Afr. Mat., 26(5): pp. 673-678, (2015).‏
    • [30] S. Debnath and S. Saha, On Statistically Convergent Sequence Spaces‏ of Interval Numbers , Proceedings of IMBIC, 3: pp. 178-183, (2014).‏
    • [31] S. Nanda, Matrix transformations between sequence spaces, Queen’s‏ papers in pure and Appl. Math., pp. 74, (1986).‏
    • [32] T. Salat, On statistical convergence sequences of real numbers, Math.‏ Slovaca, 30: pp. 139-150, (1950).‏

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno