Ir al contenido

Documat


A generalization of Drygas functional equation

  • Charifi, A. [1] ; Almahalebi, Muaadh [1] ; Kabbaj, Samir [1]
    1. [1] Université Ibn-Tofail

      Université Ibn-Tofail

      Kenitra, Marruecos

  • Localización: Proyecciones: Journal of Mathematics, ISSN 0716-0917, ISSN-e 0717-6279, Vol. 35, Nº. 2, 2016, págs. 159-176
  • Idioma: inglés
  • DOI: 10.4067/S0716-09172016000200002
  • Enlaces
  • Resumen
    • We obtain the Solutions of the following Drygas functional equation∑ λ ∈Φ f (x + λy + aλ ) = κf(x)+ ∑ λ ∈Φ f(λy), x, y ∈ Swhere S is an abelian semigroup, G is an abelian group, f ∈ GS, Φ is a finite automorphism group of S with order k, and aλ ∈ S, λ∈Φ.

  • Referencias bibliográficas
    • Citas [1] M. Ait Sibaha, B. Bouikhalene, E. Elqorachi, Hyers-Ulam-Rassias stability of the K-quadratic functional equation, J. Ineq. Pure...
    • [2] L. M. Arriola, W. A. Beyer, Stability of the Cauchy functional equation‏ over p-adic fields, Real Analysis Exchange, 31 (1), pp. 125-132,...
    • [3] J. Baker, A general functional equation and its stability, Proceedings‏ of the American Mathematical Society, 133(6), pp. 1657-1664, (2005).‏
    • [4] B. Bouikhalene and E. Elqorachi, Hyers-Ulam-Rassias stability of the‏ Cauchy linear functional equation, Tamsui Oxford Journal of Mathematical...
    • [5] A. Charifi, B. Bouikhalene, E. Elqorachi, Hyers-Ulam-Rassias stability‏ of a generalized Pexider functional equation, Banach J. Math....
    • [6] A. Charifi,B. Bouikhalene, E. Elqorachi, A. Redouani, Hyers-UlamRassias stability of a generalized Jensen functional equation, Aust. J.‏...
    • [7] AB. Chahbi, A. Charifi, B. Bouikhalene, S. Kabbaj, Operatorial approach to the non-Archimedean stability of a Pexider K-quadratic functional...
    • [8] D. Z. Djokovic, A representation theorem for (X1−1)(X2−1)...(Xn−1)‏ and its applications, In Annales Polonici Mathematici 22 (2), pp....
    • [9] H. Drygas, Quasi-inner products and their applications, Springer‏ Netherlands., pp. 13-30, (1987).‏
    • [10] B. R. Ebanks, P. L. Kannappan, P. K. Sahoo, A common generalization‏ of functional equations characterizing normed and quasi-inner-product‏...
    • [11] V. A. Faiziev, P. K. Sahoo, On Drygas functional equation on groups,‏ Int. J. Appl. Math. Stat. 7, pp. 59-69, (2007).‏
    • [12] M. Frechet, Une d´ efinition fonctionnelles des polynˆ omes, Nouv. Ann.‏ 9, pp. 145-162, (1909).‏
    • [13] A. Gianyi, A characterization of monomial functions, Aequationes‏ Math. 54, pp. 343-361, (1997).‏
    • [14] D. H. Hyers, Transformations with bounded n-th differences, Pacific J.‏ Math., 11, pp. 591-602, (1961).‏
    • [15] S.-M. Jung, Stability of the quadratic equation of Pexider type, Abh.‏ Math. Sem. Univ. Hamburg, 70, pp. 175-190, (2000).‏
    • [16] S.-M. Jung, P. K. Sahoo, Hyers-Ulam stability of the quadratic equation of Pexider type, J. Korean Math. Soc., 38 (3), pp. 645-656, (2001).‏
    • [17] S.-M. Jung, P. K. Sahoo, Stability of a functional equation of Drygas,‏ Aequationes Math., 64 (3), pp. 263-273, (2002).‏
    • [18] R. Ã Lukasik, Some generalization of Cauchy’s and the quadratic functional equations, Aequat. Math., 83, pp. 75-86, (2012).‏
    • [19] S. Mazur, W. Orlicz, Grundlegende Eigenschaften der Polynomischen‏ Operationen, Erst Mitteilung, Studia Math., 5, pp. 50-68, (1934).‏
    • [20] A. K. Mirmostafaee, Non-Archimedean stability of quadratic equations,‏ Fixed Point Theory, 11 (1), pp. 67-75, (2010).‏
    • [21] P. K. Sahoo and Pl. Kannappan, Introduction to Functional Equations,‏ CRC Press, Boca Raton, Florida, (2011).‏
    • [22] P. Sinopoulos, Functional equations on semigroups, Aequationes Math.‏ 59, pp.255-261, (2000).‏
    • [23] W. Smajdor, On set-valued solutions of a functional equation of Drygas, Aequ. Math. 77, pp. 89-97, (2009).‏
    • [24] H. Stetkær, Functional equations on abelian groups with involution. II,‏ Aequationes Math. 55, pp. 227-240, (1998).‏
    • [25] H. Stetkær, Functional equations involving means of functions on the‏ complex plane, Aequationes Math. 55, pp. 47-62, (1998).‏
    • [26] Gy. Szabo, Some functional equations related to quadratic functions,‏ Glasnik Math. 38, pp. 107-118, (1983).‏
    • [27] D. Yang, Remarks on the stability of Drygas equation and the Pexiderquadratic equation, Aequationes Math. 68, pp. 108-116, (2004).‏ ‏

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno