Ir al contenido

Documat


Non-linear maps preserving singular algebraic operators

  • Oudghiri, Mourad [1] ; Souilah, Khalid [1]
    1. [1] Uiversité Mohammed Premier.
  • Localización: Proyecciones: Journal of Mathematics, ISSN 0716-0917, ISSN-e 0717-6279, Vol. 35, Nº. 3, 2016, págs. 301-316
  • Idioma: inglés
  • DOI: 10.4067/S0716-09172016000300007
  • Enlaces
  • Resumen
    • Let B(H) be the algebra of all bounded linear operators on an infinite-dimensional Hilbert space H. We prove that if Φ is a surjective map on B(H) such that Φ(I) = I + Φ(0) and for every pair T, S ∈ B(H), the operator T — S is singular algebraic if and only if Φ(T) — Φ(S) is singular algebraic, then Φ is either of the form Φ(T) = ATA-1 + Φ(0) or the form Φ(T) = AT*A-1 + Φ(0) where A : H → H is an invertible bounded linear, or conjugate linear, operator.

  • Referencias bibliográficas
    • Citas [1] Z. F. Bai and J. Hou, Linear maps and additive maps that preserve operators annihilated by a polynomial, J. Math. Anal. Appl....
    • [2] Z. F. Bai and J. Hou, Additive maps preserving nilpotent operators or spectral radius, Acta Math. Sin. (Engl. Ser.) 21, pp. 1167-1182,...
    • [3] A. Bourhim, J. Mashreghi and A. Stepanyan, Nonlinear maps preserving the minimum and surjectivity moduli, Linear Algebra Appl. 463, pp....
    • [4] J. K. Han, H. Y. Lee and W. Y. Lee, Invertible completions of 2×2 upper triangular operator matrices, Proc. Amer. Math. Soc. 128, pp....
    • [5] H. Havlicek and P. Semrl, From geometry to invertibility preservers, Studia Math. 174, pp. 99-109, (2006).
    • [6] J. Hou and L. Huang, Characterizing isomorphisms in terms of completely preserving invertibility or spectrum, J. Math. Anal. Appl. 359,...
    • [7] L. K. Hua, A theorem on matrices over a field and its applications, Acta Math. Sin. (Engl. Ser.) 1, pp. 109-163, (1951).
    • [8] W.-L. Huang and P. Semrl, Adjacency preserving maps on Hermitian matrices, Canad. J. Math. 60, pp. 1050-1066, (2008).
    • [9] A. A. Jafarian and A. R. Sourour, Spectrum-preserving linear maps, J. Funct. Anal. 66, pp. 255-261, (1986).
    • [10] M. Kuczma, An Introduction to the Theory of Functional Equations and Inequalities, Panstwowe Wydawnictwo Naukowe, Warszawa, (1985)
    • [11] V. Müller, Spectral Theory of Linear Operators and Spectral Systems in Banach Algebras. Second edition. Operator Theory: Advances and...
    • [12] M. Omladic and P. Semrl, Additive mappings preserving operators of rank one, Linear Algebra Appl. 182, pp. 239-256, (1993).
    • [13] C. Pearcy and D. Topping, Sums of small numbers of idempotents, Michigan Math. J. 14, pp. 453-465, (1967).
    • [14] T. Petek and P. Semrl, Adjacency preserving maps on matrices and operators, Proc. Roy. Soc. Edinburgh 132A, 661-684, (2002).
    • [15] P. Semrl, On Hua’s fundamental theorem of the geometry of rectangular matrices, J. Algebra 248, pp. 366-380, (2002).
    • [16] P. Semrl, Hua’s fundamental theorem of the geometry of matrices, J. Algebra 272, pp. 801-837, (2004).
    • [17] K. Souilah, On additive preservers of certain classes of algebraic operators, Extracta Math. 30, pp. 207-220, (2015).
    • [18] A. E. Taylor and D. C. Lay, Introduction to Functional Analysis, Wiley, New York-Chichester-Brisbane, (1980).
    • [19] Z. Wan, Geometry of Matrices, World Scientific Publishing Co., Singapore, (1996).

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno