Ir al contenido

Documat


Jewell theorem for higher derivations on C*-algebras.

  • Hejazian, Shirin [1] ; Mirzavaziri, Madjid [1] ; Tehrani, Elahe Omidvar [1]
    1. [1] Ferdowsi University of Mashhad

      Ferdowsi University of Mashhad

      Irán

  • Localización: Proyecciones: Journal of Mathematics, ISSN 0716-0917, ISSN-e 0717-6279, Vol. 29, Nº. 2, 2010, págs. 101-108
  • Idioma: inglés
  • DOI: 10.4067/S0716-09172010000200003
  • Enlaces
  • Resumen
    • Let A be an algebra. A sequence {dn} of linear mappings on A is called a higher derivation if for each a, b ? A and each nonnegative integer n. Jewell [Pacific J. Math. 68 (1977), 91-98], showed that a higher derivation from a Banach algebra onto a semisimple Banach algebra is continuous provided that ker(d0) ? ker(dm), for all m = 1. In this paper, under a different approach using C*-algebraic tools, we prove that each higher derivation {dn} on a C*-algebra A is automatically continuous, provided that it is normal, i. e. d0 is the identity mapping on A.

  • Referencias bibliográficas
    • Citas H. G. Dales, Banach Algebras and Automatic Continuity, London Mathematical Society Monographs, New Series, 24. The Clarendon Press,...
    • H. Hasse and F. K. Schmidt, Noch eine Begrüdung der theorie der höheren Differential quotienten in einem algebraischen Funtionenkörper einer...
    • S. Hejazian, A.R. Janfada, M. Mirzavaziri and M.S. Moslehian, Achievement of continuity of (ϕ, ψ)-derivations without linearity, Bull. Belg....
    • S. Hejazian, T. L. Shatery, Automatic continuity of higher derivations on JB∗-algebras, Bull. Iranian Math. Soc., 33, No. 1, pp. 11—23, (2007).
    • N. P. Jewell, Continuity of module and higher derivations, Pacific J. Math. 68, pp. 91—98, (1977).
    • I. Kaplansky, Functional analysis, Some aspects of analysis and probability, Surveys in Applied Mathematics. Vol. 4 John Wiley & Sons,...
    • R. J. Loy, Continuity of higher derivations, Pros. Amer. Math. Soc. 5, pp. 505—510, (1973).
    • M. Mirzavaziri and M. S. Moslehian, Automatic continuity of σ- derivations in C∗-algebras, Proc. Amer. Math. Soc., 134, No. 11, pp. 3319—3327,...
    • J. G. Murphy, Operator Theory and C∗-algebras, Academic Press, Inc., Boston, MA, (1990).
    • T. W. Palmer, Banach algebras and the general theory of ∗-algebras, Vol. I. Algebras and Banach algebras, Encyclopedia of Mathematics and...
    • S. Sakai, On a conjecture of Kaplansky, Tohoku Math. J. (2) 12, pp. 31—33, (1960).
    • S. Sakai, Operator Algebra in Dynamical Systems. Cambridge Univ. press, (1991).
    • Y. Uchino and T. Satoh, Functional field modular forms and higher derivations, Math. Ann. 311, pp. 439—466, (1998).
    • A. R. Villena, Lie derivations on Banach algebras, J. Algebra 226, pp. 390-409, (2000).

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno