Ir al contenido

Documat


On strongly faint e-continuous functions

  • Caldas Cueva, Miguel [1] ; Jafari, Saeid [2]
    1. [1] Universidade Federal Fluminense

      Universidade Federal Fluminense

      Brasil

    2. [2] College of Vestsjaelland South.
  • Localización: Proyecciones: Journal of Mathematics, ISSN 0716-0917, ISSN-e 0717-6279, Vol. 30, Nº. 1, 2011, págs. 29-41
  • Idioma: inglés
  • DOI: 10.4067/S0716-09172011000100003
  • Enlaces
  • Resumen
    • A new class of functions, called strongly faint e-continuous function, has been defined and studied. Relationships among strongly faint e-continuous functions and econnected spaces, e-normal spaces and e-compact spaces are investigated. Furthermore, the relationships between strongly faint e-continuous functions and graphs are also investigated.

  • Referencias bibliográficas
    • Citas [1] M. E. Abd El-Monsef, S. N. Ei-Deeb and R. A. Mahmoud, β-open sets and β-continuous mappings, Bull. Fac. Assiut Univ. 12, pp. 77-...
    • [2] M. Caldas, On fantly e-continuous functions. Submitted.
    • [3] M. Caldas, S. Jafari and T. Noiri, Some separation axioms via modified θ-open, Bull. of the Iranian Math. Soc., 29(2), pp. 1-12, (2003).
    • [4] E. Ekici, On e-open sets, DP∗-sets and DPC∗-sets and decompositions of continuity. The Arabian J. for Sci. and Eng., 33 (2A), pp. 269-282,...
    • [5] E. Ekici, On a-open sets, A∗-sets and Decompositions of continuity and super continuity, Annales Univ. Sci. Budapest, 51, pp. 39-51, (2008).
    • [6] E. Ekici, New forms of contra continuity, Carpathian J. Math., 24 (1), pp. 37-45, (2008).
    • [7] E. Ekici, On e∗-open sets and (D, S)∗-sets, Math. Moravica, Vol. 13(1), pp. 29-36, (2009).
    • [8] E. Ekici, Some generalizations of almost contra-super-continuity, Filomat, 21 (2), pp. 31-44, (2007).
    • [9] E. Ekici, A note on a-open sets and e∗-sets, Filomat, 21 (1), pp. 89-96, (2008).
    • [10] A.A. El-Atik, Study of some types of mappings on topological spaces, Bull.Masters. Thesis, Faculty of Science, Tanta University, Egypt,...
    • [11] S. Jafari, Some properties of quasi θ-continuous functions, Far East J. Math. Soc., 6, pp. 689-696, (1998).
    • [12] N. Levine, Semi-open sets and semi-continuity in topological spaces, Amer. Math. Monthly, 68, pp. 44-46, (1961).
    • [13] N. Levine, Generalized closed sets in topology, Rend. Circ. Math. Palermo, 19, pp. 89-96, (1970).
    • [14] P. E. Long and L. L. Herrington, The Tθ-topology and faintly continuous functions, Kyungpook Math. J., 22, pp. 7-14, (1982).
    • [15] A. S. Mashhour, M. E. Abd El-Monsef and S. N. El-Deeb, On precontinuous and weak precontinuous mappings, Proc. Math. Phys. Soc. Egypt,...
    • [16] A. A. Nasef , Recent progress in the theory of faint continuity, Mathematical and Computer Modelling, 49, pp. 536-541, (2009).
    • [17] A. A. Nasef, strongly β-irresolute functions, J. Natur. Sci. Math., 36, pp. 199-206, (1996).
    • [18] A. A. Nasef and T. Noiri, Strong forms of faint continuity, Mem. Fac. Sci. Kochi Univ. Ser. A. Math, 19, pp. 21-28, (1998).
    • [19] O. Njastad, On some classes of nearly open sets, Pacific J. Math., 15, pp. 961-970, (1965).
    • [20] T. Noiri, On δ-continuous functions, J. Korean Math. Soc., 16, pp. 161-166, (1980).
    • [21] S. Raychaudhuri and M. N. Mukherjee, On δ-almost continuity and δ-preopen sets, Bull. Inst. Math. Acad. Sinica 21, pp. 357-366, (1993).
    • [22] S. Sinharoy and S. Bandyopadhyay, On θ-completely regular and locally θ-H-closed spaces, Bull. Cal. Math. Soc., 87, pp. 19-28, (1995).
    • [23] N. V. Velicko, H-closed topological spaces, Mat. Sb., 70 (1966), 98- 112; English transl., in Amer. Math. Soc. Transl., 78, pp. 103-118,...

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno