Ir al contenido

Documat


An extension of sheffer polynomials

  • Shukla, Ajay K. [1] ; Rapeli, S. J. [1]
    1. [1] National Institute Of Technology

      National Institute Of Technology

      Japón

  • Localización: Proyecciones: Journal of Mathematics, ISSN 0716-0917, ISSN-e 0717-6279, Vol. 30, Nº. 2, 2011, págs. 265-275
  • Idioma: inglés
  • DOI: 10.4067/S0716-09172011000200009
  • Enlaces
  • Resumen
    • Sheffer [Some properties of polynomial sets of type zero, Duke Math. J. 5 (1939), pp.590-622] studied polynomial sets zero type and many authors investigated various properties and its applications. In the sequel to the study of Sheffer Polynomials, an attempt is made to generalize the Sheffer polynomials by using partial differential operator.

  • Referencias bibliográficas
    • Citas [1] W. A. Al Salam and A. Verma, Generalized Sheffer Polynomials, Duke Math. J. 37, pp. 361-365, (1970).
    • [2] B. Alidad, On some problems of special functions and structural matrix analysis, Ph.D. diss., Aligarh Muslim University, (2008).
    • [3] Joseph D. Galiffa, The Sheffer B-type 1 orthogonal polynomial sequences, Ph.D. diss., University of Central Florida, (2009).
    • [4] William N. Huff and E. D. Rainville, On the Sheffer A-type of polynomials generated by φ(t)f(xt), Proc. Amer. Math. Soc. 3, pp. 296-299...
    • [5] E. B. Mc Bride, Obtaining Generating Functions, Springer, New York, (1971).
    • [6] V. B. Osegove, Some extremal properties of generalized Appell polynomials, Soviet Math. Five, pp. 1651-1653, (1964).
    • [7] E. D. Rainville, Special Functions, the Macmillan Company, New York, (1960).
    • [8] I. M. Sheffer, Some properties of polynomial sets of type zero, Duke Math. J. 5, pp. 590-622, (1939).
    • [9] J. F. Steffensen, The Poweroid, an extension of the mathematical notion of power, Acta Math. 73, pp. 333-366, (1941).

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno