Ir al contenido

Documat


Lie algebras with complex structures having nilpotent eigenspaces

  • Licurgo, Edson Carlos [2] ; San Martín, Luiz A. B. [1]
    1. [1] Universidade Estadual de Campinas

      Universidade Estadual de Campinas

      Brasil

    2. [2] Universidade de Campinas.
  • Localización: Proyecciones: Journal of Mathematics, ISSN 0716-0917, ISSN-e 0717-6279, Vol. 30, Nº. 2, 2011, págs. 247-263
  • Idioma: inglés
  • DOI: 10.4067/S0716-09172011000200008
  • Enlaces
  • Resumen
    • Let (g, [•, •]) be a Lie algebra with an integrable complex structure J. The ±i eigenspaces of J are complex subalgebras of gC isomorphic to the algebra (g, [*]J) with bracket [X * Y]J = 2 ([X, Y] - [JX, JY]). We consider here the case where these subalgebras are nilpotent and prove that the original (g, [•, •]) Lie algebra must be solvable. We consider also the 6-dimensional case and determine explicitly the possible nilpotent Lie algebras (g, [*]J). Finally we produce several examples illustrating different situations, in particular we show that for each given s there exists g with complex structure J such that (g, [*]J) is s-step nilpotent. Similar examples of hypercomplex structures are also built.

  • Referencias bibliográficas
    • Citas [1] A. Andrada, M. L. Barberis, I. G. Dotti and G. P. Ovando, Product Structures on Four Dimensional Solvable Lie algebras. Homology,...
    • [2] M. L. Barberis and I. Dotti, Abelian Complex Structures on Solvable Lie Algebras, J. Lie Theory, 14, pp. 25-34, (2004).
    • [3] P. Bartolomeis: Z2 and Z-Deformation Theory for Holomorphic and Symplectic Manifolds. Complex, contact and symmetric manifolds, pp. 75—103,...
    • [4] A. Borel, Groupes Linéaires Algébriques, Ann. of Math. 64, pp. 20—82, (1956).
    • [5] L. A. Cordero, M. Fernandez, A. Gray and L. Ugarte, Nilpotent Complex Structures, Rev. R. Acad. Cien. Serie A. Mat. 95(1), pp. 45-55,...
    • [6] I. Dotti and A. Fino, Abelian Hypercomplex 8-Dimensional Nilmanifolds, Ann.Global Anal.Geom. 18, pp. 47-59, (2000).
    • [7] I. Dotti and A. Fino, Hypercomplex Eight-Dimensional Nilpotent Lie Groups, J. Pure Appl. Algebra, 184, pp. 41-57, (2003).
    • [8] I. Dotti and A. Fino, Hypercomplex Nilpotent Lie Groups, Contemp. Math. 288, pp. 310-314, (2001).
    • [9] I. Dotti and A. Fino, HyperKahler Torsion Structures Invariant by Nilpotent Lie Groups, Class. Quantum Grav. 19, pp. 551-562, (2002).
    • [10] M. Goto, Note on a Characterization of Solvable Lie Algebras, J. Sci. Hiroshima Univ. Ser. A-I, 26, pp. 1-2, (1962).
    • [11] A. A. G. Michael, On the Conjugacy Theorem of Cartan Subalgebras, Hiroshima Math. J. 32, pp. 155-163, (2002).
    • [12] P. Petravchuk, Lie algebras Decomposable as Sum of an Abelian and a Nilpotent subalgebra. Ukr. Math. J., 40, pp. 385-388, (1988).
    • [13] S. Salamon, Complex Structures on Nilpotent Lie Algebras, J. Pure appl. Algebra, 157, pp. 311-33, (2001).
    • [14] L. A. B. San Martin, Algebras de Lie. Editora da Unicamp, (1999).
    • [15] J. P. Serre, Complex Semisimple Lie Algebras. Springer-Verlag, New York, (1987).

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno