Ir al contenido

Documat


Partial trees in weighted graphs-i

  • Mathew, Sunil [1]
    1. [1] National Institute Of Technology

      National Institute Of Technology

      Japón

  • Localización: Proyecciones: Journal of Mathematics, ISSN 0716-0917, ISSN-e 0717-6279, Vol. 30, Nº. 2, 2011, págs. 163-174
  • Idioma: inglés
  • DOI: 10.4067/S0716-09172011000200003
  • Enlaces
  • Resumen
    • This paper generalizes the tree concept in Graph Theory, which plays a crucial role in many areas of science and technology. This paper also characterizes partial trees using the concept of maximum spanning trees.

  • Referencias bibliográficas
    • Citas [1] P. Bhattacharya, suraweera, An algorithm to compute the supremum of max-min powers and a property of fuzzy graphs, Pattern Recognition...
    • [2] J. A.Bondy, G. Fan, Optimal paths and cycles in weighted graphs, Ann.Discrete Mathematics, 41, pp.53-69, (1989).
    • [3] J. A. Bondy, G. Fan, Cycles in weighted graphs, Combinatorica, 11(1991), pp. 191-205, (1991).
    • [4] J. A. Bondy, H. J. Broersma, J. van den Heuvel and H. J. Veldman, Heavy cycles in weighted graphs, Discuss. Math. Graph Theory, 22, pp....
    • [5] R. Diestel, Graph Theory, Second edition, Graduate texts in mathematics 173, Springer, (2000).
    • [6] G. A. Dirac, Some theorems on abstract graphs, Proc. London Math. Soc., (3) 2, pp. 69 - 81, (1952).
    • [7] M. Grotschel, Graphs with cycles containing given paths, Ann. Discrete Math., 1, pp.233 - 245, (1977).
    • [8] Sunil Mathew, M.S.Sunitha, Bonds in graphs and fuzzy graphs, Advances in Fuzzy Sets and Systems, 6 (2), pp. 107-119, (2010).
    • [9] Sunil Mathew, M. S. Sunitha, Node connectivity and arc connectivity of a fuzzy graph, Information Sciences 180, pp. 519-531, (2010).
    • [10] Sunil Mathew, M. S. Sunitha, Some connectivity concepts in weighted graphs, Advances and Applications in Discrete Mathematics 6 (1),...
    • [11] Sunil Mathew, M. S. Sunitha, Types of arcs in a fuzzy graph, Information Sciences, 179(11), pp. 1760-1768, (2009).
    • [12] Sunil Mathew, M. S. Sunitha, Cycle connectivity in weighted graphs, Proyecciones Journal of Mathematics, 30, 1, pp. 1-17, (2009).
    • [13] S. Zang, X. Li,H. Broersma, Heavy paths and cycles in weighted graphs, Discrete Math., 223, pp. 327-336, (2000).

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno