Ir al contenido

Documat


A quantum mechanical proof of the fourier inversion formula

  • Castro, Nelson [1] ; Mendoza, Ramón [2] ; Rojas, Jacqueline F. [1]
    1. [1] Universidade Federal da Paraíba

      Universidade Federal da Paraíba

      Brasil

    2. [2] Universidade Federal de Pernambuco

      Universidade Federal de Pernambuco

      Brasil

  • Localización: Proyecciones: Journal of Mathematics, ISSN 0716-0917, ISSN-e 0717-6279, Vol. 30, Nº. 3, 2011, págs. 441-457
  • Idioma: inglés
  • DOI: 10.4067/S0716-09172011000300010
  • Enlaces
  • Resumen
    • The translation of the observable, position and momentum, of a given particle in the real line, at a certain time t, from Classical Mechanics, into the operators, position and momentum, in Quantum Mechanics, gives us the inspiration to make a proof of the existence of the Fourier's Inverse Transform, using algebraic relations involving these operators (position and momentum), a few of Linear Algebra and Analysis, without resorting to the classical technics like Fubini's Theorem and Lebesgue's Dominated Convergence Theorem.

  • Referencias bibliográficas
    • Citas [1] P. Cordaro and A. Kawano, O Delta de Dirac. Livraria da Física Editora, (2002).
    • [2] D. G. Figueiredo, Análise de Fourier e Equacoes Diferenciais Parciais. Projeto Euclides, IMPA, (2000).
    • [3] J. Glimm and A. Jaffe, Quantum Physics, A Functional Integral Point of View. Springer, 2nd edition, (1987).
    • [4] J. Hounie, Teoria Elementar das Distribuicoes. IMPA, Rio de Janeiro, (1979).
    • [5] E. L. Lima, Algebra Linear. IMPA, Segunda Edicao, (1996).
    • [6] E. H. Lieb and M.Loss, Analysis. AMS, (1997).
    • [7] A. H. Zemanian, Distribution Theory and Transform Analysis: An Introduction to Generalized Functions, with Applications. Dover Publications,...

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno