Ir al contenido

Documat


Accretive operators and banach alaoglu theorem in linear 2-normed spaces

  • Harikrishnan, P. K. [2] ; De La Fuerza, Bernardo [1] ; Ravindran, K. T. [3]
    1. [1] Universidad de Almería

      Universidad de Almería

      Almería, España

    2. [2] Manipal Institute of Technology.
    3. [3] Payyanur College.
  • Localización: Proyecciones: Journal of Mathematics, ISSN 0716-0917, ISSN-e 0717-6279, Vol. 30, Nº. 3, 2011, págs. 319-327
  • Idioma: inglés
  • DOI: 10.4067/S0716-09172011000300004
  • Enlaces
  • Resumen
    • In this paper we introduce the concept of accretive operator in linear 2-normed spaces, focusing on the relationships and the various aspects of accretive, m-accretive and maximal accretive operators. We prove the analogous of Banach-Alaoglu theorem in linear 2- normed spaces, obtaining an equivalent definition for accretive operators in linear 2-normed spaces.

  • Referencias bibliográficas
    • Citas [1] Berbarian, Lectures in Operator theory, Springer, 1973.
    • [2] Fatemeh Lael and Kourosh Nourouzi, Compact Operators Defined on 2-Normed and 2-Probabilistic Normed Spaces, Hindawi Publishing Corporation,Mathematical...
    • [3] Raymond W. Freese,Yeol Je Cho, Geometry of linear 2-normed spaces, Nova Science publishers, Inc, Newyork, (2001).
    • [4] Shiha“ sen Chang, Yeol Je Cho, Shin Min Kang, Nonlinear operator theory in Probabilistic Metric spaces, Nova Science publishers, Inc,...
    • [5] S. Gahler, Siegfried 2-metrische Raume und ihre topologische struktur, Math. Natchr. 26(1963),115-148 .
    • [6] T. Kato, Nonlinear semigroups and evolution equations, J. Math. Soc. Japan, Vol. 19, No. 4, (1967).

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno