Ir al contenido

Documat


A note on Buchi´s problem for p-adic numbers

  • Castillo, Marianela [1]
    1. [1] Universidad de Concepción

      Universidad de Concepción

      Comuna de Concepción, Chile

  • Localización: Proyecciones: Journal of Mathematics, ISSN 0716-0917, ISSN-e 0717-6279, Vol. 30, Nº. 3, 2011, págs. 295-302
  • Idioma: inglés
  • DOI: 10.4067/S0716-09172011000300002
  • Enlaces
  • Resumen
    • We prove that for any prime p and any integer k > 2,there exist in the ring Zp of p-adic integers arbitrarily long sequences whose sequence of k-th powers1)has its k-th difference sequence equal to the constant sequence (k!); and 2) is not a sequence of consecutive k-th powers. This shows that the analogue of Buchi's problem for higher powers has a negative answer over Zp.This result for k = 2 was recently obtained by J. Browkin.

  • Referencias bibliográficas
    • Citas [1] J. Browkin, Büchi sequences in local fields and local rings, Bull. Polish Acad. Sci. Math. 58, 109-115 (2010).
    • [2] H. Hasse, Number Theory, Springer (1980).
    • [3] N. Koblitz, P-adic Numbers, p-adic Analysis, and Zeta-Functions, Springer Graduate Texts in Mathematics, (1996).
    • [4] J. Neukirch, Class field theory, Springer Verlag, Grundlehren der mathematischen Wissenschaften 280, A Series of Comprehensive Studies...
    • [5] H. Pasten, T. Pheidas and X. Vidaux, A survey on Büchi’s problem: new presentations and open problems, Zapiski Nauchn. Sem. POMI 377,...
    • [6] T. Pheidas and X. Vidaux, Extensions of Büchi’s problem : Questions of decidability for addition and n-th powers, Fundamenta Mathematicae...

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno