Ir al contenido

Documat


The Signature in Actions of Semisimple Lie Groups on Pseudo-Riemannian Manifolds

  • Rosales-Ortega, José [1]
    1. [1] Universidad de Costa Rica

      Universidad de Costa Rica

      Hospital, Costa Rica

  • Localización: Proyecciones: Journal of Mathematics, ISSN 0716-0917, ISSN-e 0717-6279, Vol. 31, Nº. 1, 2012, págs. 51-63
  • Idioma: inglés
  • DOI: 10.4067/S0716-09172012000100006
  • Enlaces
  • Resumen
    • We study the relationship between the signature of a semisimple Lie group and a pseudoRiemannian manifold on wich the group acts topologically transitively and isometrically. We also provide a descrip­tion of the bi-invariant pseudo-Riemannian metrics on a semisimple Lie Group over R in terms of the complexification of the Lie algebra associated to the group, and then we utilize it to prove a remark of Gromov.

  • Referencias bibliográficas
    • Citas [1] S. Helgason, Differential Geometry, Lie Groups and Symmetric Spaces, Academic Press, New York, (1978).
    • [2] M. Gromov, Rigid transformations groups, Geometrie differentielle (Paris 1986), Travaux en Cours 33, Hermann, Paris, pp. 65—139, (1988).
    • [3] B. O’neill, SEMI-RIEMANNIAN GEOMETRY, Academic Press, New York, (1983).
    • [4] J. Rosales-Ortega, The Gromov’s Centralizer theorem for semisimple Lie group actions. Ph.D. Thesis, CINVESTAV-IPN, (2005).
    • [5] J. Szaro, Isotropy of semisimple group actions on manifolds with geometric structures, Amer. J. Math.120, pp. 129—158, (1998).
    • [6] R. J. Zimmer, Ergodic Theory and Semisimple Lie Groups, Birkhauser, Boston, (1984).

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno