We obtain very fast sequences convergent to Euler-Mascheroni constant.
Referencias bibliográficas
Citas [1] N. Batir, Sharp bounds for the psi function and harmonic numbers, Math. Inequal. Appl., No. 4, pp. 917-925, (2011).
[2] C-P Chen, C. Mortici, New sequences converging towards the EulerMascheroni constant, Computer and Mathematics with Applications, doi:10.1016/j.camwa.2011.03.099,...
[3] C-P. Chen, Inequalities for the Euler-Mascheroni constant, Appl. Math. Lett., 23, pp. 161-164, (2010).
[4] C. Mortici, New approximation of the gamma function in terms of the digamma function, Appl. Math. Lett., 23, No. 1, pp. 97-100, (2010).
[5] C. Mortici, Fast convergences toward Euler-Mascheroni constant, Comput. Appl. Math., 29, No. 3, pp. 479-491, (2010).
[6] C. Mortici, On new sequences converging towards the Euler-Mascheroni constant, Computer Math. Appl., 59, No. 8, pp. 2610-2614, (2010).
[7] C. Mortici, Optimizing the rate of convergence of some new classes of sequences convergent to Euler constant, Analysis Appl., 8, No. 1,...
[8] C. Mortici, A quicker convergence toward the constant with the logarithm term involving the constant e, Carpathian J. Math., 26, No. 1,...
[9] T. Negoi, A faster convergence to the constant of Euler, Gazeta Matematica, Seria A, 15, No. 94, pp. 113, (1997).
[10] D. W. Temple, A geometric look at sequences that converge to Euler’s constant, College Math. J., 37, pp. 128-131, (2006).
[11] D. W. Temple, A quicker convergences to Euler’s constant, Amer. Math. Monthly, 100 (5), pp. 468-470,(1993).
[12] R. M. Young, Euler’s constant, Math. Gaz., 75, pp. 187-190, (1991).