Ir al contenido

Documat


Uniform Convergence and the Hahn-Schur Theorem

  • Swartz, Charles [1]
    1. [1] New Mexico State University

      New Mexico State University

      Estados Unidos

  • Localización: Proyecciones: Journal of Mathematics, ISSN 0716-0917, ISSN-e 0717-6279, Vol. 31, Nº. 2, 2012, págs. 149-164
  • Idioma: inglés
  • DOI: 10.4067/S0716-09172012000200004
  • Enlaces
  • Resumen
    • Let E be a vector space, F aset, G be a locally convex space, b : E X F — G a map such that ò(-,y): E — G is linear for every y G F; we write b(x, y) = x · y for brevity. Let λ be a scalar sequence space and w(E,F) the weakest topology on E such that the linear maps b(-,y): E — G are continuous for all y G F .A series Xj in X is λ multiplier convergent with respect to w(E, F) if for each t = {tj} G λ ,the series Xj=! tj Xj is w(E,F) convergent in E. For multiplier spaces λ satisfying certain gliding hump properties we establish the following uniform convergence result: Suppose j XX ij is λ multiplier convergent with respect to w(E, F) for each i G N and for each t G λ the set {Xj=! tj Xj : i} is uniformly bounded on any subset B C F such that {x · y : y G B} is bounded for x G E.Then for each t G λ the series ^jjLi tj xj · y converge uniformly for y G B,i G N. This result is used to prove a Hahn-Schur Theorem for series such that lim¿ Xj=! tj xj · y exists for t G λ,y G F.

  • Referencias bibliográficas
    • Citas [BCS] O. Blasco, J. M. Calabuig, T. Signes, A bilinear version of OrliczPettis theorem, J. Math. Anal. Appl., 348, pp. 150-164, (2008).
    • [CL] A. Chen, R. Li, A version of Orlicz-Pettis Theorem for quasihomogeneous operator space, J. Math. Anal. Appl., 373, pp. 127-133, (2011).
    • [Ga] D. J. H. Garling, The β− and γ−duality of sequence spaces, Proc. Camb. Phil. Soc., 63, pp. 963-981, (1967).
    • [Ha] H. Hahn, Uber Folgen linearen Operationen, Monatsch. fur Math. und Phys., 32, pp. 1-88, (1922).
    • [K1] G. Kothe, Topological Vector Spaces I, Springer, Berlin, (1983).
    • [K2] G. Kothe, Topological Vector Spaces II, Springer, Berlin, (1979).
    • [LW] R. Li, J. Wang, Invariants in Abstract Mapping Pairs, J. Aust. Math. Soc., 76, pp. 369-381, (2004).
    • [Sc] J. Schur, Uber lineare Transformation in der Theorie die unendlichen Reihen, J. Reine Agnew. Math., 151, pp. 79-111, (1920).
    • [St] W. J. Stiles, On Subseries Convergence in F-spaces, Israel J. Math., 8, pp. 53-56, (1970).
    • [Sw1] C. Swartz, An Introduction to Functional Analysis, Marcel Dekker, N. Y., (1992).
    • [Sw2] C. Swartz, Infinite Matrices and the Gliding Hump, World Sci. Publ., Singapore, (1996).
    • [Sw3] C. Swartz, Multiplier Convergent Series, World Sci. Publ., Singapore, (2009).
    • [Sw4] C. Swartz, A Bilinear Orlicz-Pettis Theorem, J. Math. Anal. Appl., 365, pp. 332-337, (2010).
    • [Th] G. E. F. Thomas, L’integration par rapport a une mesure de Radon vectorielle, Ann. Inst. Fourier, 20(, pp. 55-191, (1970).
    • [Wi] A. Wilansky, Modern Methods in Topological Vector Spaces, McGraw-Hill, N. Y., (1978).

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno