Ir al contenido

Documat


On the spectral radius of weighted digraphs

  • Burcu, S. [1] ; Bozkurt, Durmus [1]
    1. [1] Selçuk University

      Selçuk University

      Turquía

  • Localización: Proyecciones: Journal of Mathematics, ISSN 0716-0917, ISSN-e 0717-6279, Vol. 31, Nº. 3, 2012, págs. 247-259
  • Idioma: inglés
  • DOI: 10.4067/S0716-09172012000300005
  • Enlaces
  • Resumen
    • We consider the weighted digraphs in which the arc weights are positive definite matrices. We obtain some upper bounds for the spectral radius of these digraphs and characterize the digraphs achieving the upper bounds. Some known upper bounds are then special cases of our results.

  • Referencias bibliográficas
    • Citas [1] D. M. Cvetkovic, M. Doob and H. Sachs, Spectra of Graphs, Academic Press, New York, 1980 (second revised ed., Barth, eidelberg,...
    • [2] D. M. Cvetkovic, M. Doob , I. Gutman and A. Torgaˇ sev, Recent Results in the Theory of Graph Spectra, North-Holland, 1988.
    • [3] F. Buckley and F. Harary, Distance in Graphs, (Addison-Wesley, Redwood, 1990).
    • [4] G. H. Xu and C.Q. Xu, Sharp bounds for the spectral radius of digraphs. Linear Algebra Appl. 430, pp. 1607—1612, (2009).
    • [5] H. Minc, Nonnegative Matrices, Academic Press, New York, (1988)
    • [6] K. Ch. Das and R. . Bapat, A sharp upper bound on the spectral radius of weighted graphs. Discrete Math. 308, pp. 3180—3186, (2008).On...
    • [7] K. Ch. Das, Extremal graph characterization from the bounds of the spectral radius of weighted graphs. Appl. Math. Comput. 217, pp. 7420—7426...
    • [8] K. Ch. Das and R.B. Bapat, A sharp upper bound on the largest Laplacian eigenvalue of weighted graphs. Linear Algebra Appl. 409, pp. 153—165...
    • [9] K. Ch. Das, Extremal graph characterization from the upper bound of the Laplacian spectral radius of weighted graphs, Linear Algebra Appl....
    • [10] R. A. Horn and C.R. Johnson, Matrix Ananlysis, Cambridge University Press, New York, (1985).
    • [11] S. B. Bozkurt and A.D. Gungor, Improved bounds for the spectral radius of digraphs. Hacettepe J. Math. Stat. 39 (3), pp. 313—318, (2010).
    • [12] X. D. Zhang and J.S. Li, Spectral radius of nonnegative matrices and digraphs. Acta Math. Sin.18 (2), pp. 293—300, (2002)

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno