Ir al contenido

Documat


Lê constant families of singular hypersurfaces

  • Callejas-Vedregal, Roberto [1] ; Jorge Pérez, Víctor H. [2] ; Saia, M. J. [2] ; Tomazella., J. M. [3]
    1. [1] Universidade Federal da Paraíba

      Universidade Federal da Paraíba

      Brasil

    2. [2] Universidade de São Paulo

      Universidade de São Paulo

      Brasil

    3. [3] Universidade Federal de San Carlos.
  • Localización: Proyecciones: Journal of Mathematics, ISSN 0716-0917, ISSN-e 0717-6279, Vol. 31, Nº. 4, 2012, págs. 333-343
  • Idioma: inglés
  • DOI: 10.4067/S0716-09172012000400002
  • Enlaces
  • Resumen
    • We investigate the constancy of the Le numbers of one parameter deformations F :(C X Cn, 0) — (C, 0) of holomorphic germs of functions f :(Cn, 0) — (C, 0) which have singular set with any dimension s > 1. WecharacterizeLe constant deformations in terms of the non-splitting of the polar varieties and also from the integral closure of the ideal Jz (F) in On+1 generated by the partial derivatives of F with respect to the variables z = (z!,...,zn)

  • Referencias bibliográficas
    • Citas [1] J. F. Bobadilla, Topological equisingularity of function germs with 1-dimensional critical set. 8, pp. 695—736, (1999).
    • [2] T. Gaffney & R. Gassler, Segre numbers J. Alg. Geometry, 8, pp. 695—736, (1999).
    • [3] T. Gaffney & D. Massey, Trends in equisingularity theory, Singularity theory (Liverpool, 1996), 207—248, London Math. Soc. Lecture...
    • [4] G. M. Greuel, Constant Milnor number implies constant multiplicity for quasihomogeneous singularities, Manuscripta Math. 56, pp. 159—166,...
    • [5] H. Hironaka, Resolution of singularities of an algebraic variety over a field of characteristic zero, Ann. of Math. (2) 79, pp. 150—326,...
    • [6] P. Ramanujam and D. T. Lê, The invariance of Milnor number implies the invariance of the topological type, Amer. Jour. Math. 98, pp. 67—78,...
    • [7] D. T. Lê and B. Teissier, Varietes polaires locales et classes de Chern de varietes singuleres. Annals of Math., 114, pp. 457—491, (1981).
    • [8] J. Lipman, Equimultiplicity, reduction, and blowing up. Commutative algebra (Fairfax, Va., 1979), pp. 111—147, Lecture Notes in Pure and...
    • [9] D. Massey, Lê cycles and hypersurface singularities, Lecture Notes in Mathematics, 1615, Springer-Verlag 1995. Notes of 1974 seminar at...
    • [10] B. Teissier, Cycles evanescents, sections planes et conditions de Whitney, In Singularites a Cargese, Asterisque, nos. 07 et 08, Soc....

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno