Ir al contenido

Documat


3-difference cordiality of some corona graphs.

  • Ponraj, R. [2] ; Adaickalam, M. Maria [3] ; Kala, R. [1]
    1. [1] Manonmaniam Sundaranar University

      Manonmaniam Sundaranar University

      India

    2. [2] Sri Paramakalyani College.
    3. [3] District Statistical office.
  • Localización: Proyecciones: Journal of Mathematics, ISSN 0716-0917, ISSN-e 0717-6279, Vol. 38, Nº. 1, 2019, págs. 83-96
  • Idioma: inglés
  • DOI: 10.4067/s0716-09172019000100083
  • Enlaces
  • Resumen
    • Let G be a (p, q) graph. Let f : V (G) → {1, 2, . . . , k} be a map where k is an integer 2 ≤ k ≤ p. For each edge uv, assign the label |f (u) − f (v)|. f is called k-difference cordial labeling of G if |vf (i) − vf (j)| ≤ 1 and |ef (0) − ef (1)| ≤ 1 where vf (x) denotes the umber of vertices labelled with x, ef (1) and ef (0) respectively denote the number of edges labelled with 1 and not labelled with 1. A graph with a k-difference cordial labeling is called a k-difference cordial graph. In this paper we investigate 3-difference cordial labeling behavior of Tn ʘK1, Tn ʘ2K1, Tn ʘK2, A(Tn)ʘK1, A(Tn)ʘ 2K1, A(Tn) ʘ K2.

  • Referencias bibliográficas
    • Cahit.I, Cordial graph: a weaker version of graceful and harmonious graph, Ars Combinatoria, 23, pp. 201-207, (1987).
    • J.A.Gallian, A Dynamic survey of graph labeling, The Electronic Journal of Combinatorics, 19 (2016). #Ds6.
    • F. Harary, Graph theory, Addision wesley, New Delhi (1969).
    • R. Ponraj, S. Sathish Narayanan and R.Kala, Difference cordial labeling of graphs, Global Journal of Mathematical Sciences: Theory and Practical,...
    • R. Ponraj, M. Maria Adaickalam and R.Kala, k-difference cordial labeling of graphs, International journal of mathematical combinatorics, 2,...
    • R. Ponraj, M. Maria Adaickalam, 3-difference cordial labeling of some union of graphs, Palestine journal of mathematics, 6 (1), pp. 202-210,...
    • R. Ponraj, M. Maria Adaickalam, 3-difference cordial labeling of cycle related graphs, Journal of algorithms and computation, 47, pp. 1-10,...
    • R. Ponraj, M. Maria Adaickalam, 3-difference cordiality of some graphs, Palestine journal of mathematics, 2, pp. 141-148, (2017).
    • R. Ponraj, M. Maria Adaickalam, 3-difference cordial labeling of corona related graphs, (communicated).
    • R. Ponraj, M. Maria Adaickalam, and R.Kala, 3-difference cordial labeling of some path related graphs, (communicated).
    • M. A.Seoud and Shakir M. Salman, On difference cordial graphs, Mathematica Aeterna, 5, No. 1, pp. 105-124, (2015).

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno