Ir al contenido

Documat


Algorithm for the generalized Φ-strongly monotone mappings and application to the generalized convex optimization problem.

  • Aibinu, M. O. [1] ; Mewomo, O. T. [1]
    1. [1] University of KwaZulu-Natal

      University of KwaZulu-Natal

      Ethekwini, Sudáfrica

  • Localización: Proyecciones: Journal of Mathematics, ISSN 0716-0917, ISSN-e 0717-6279, Vol. 38, Nº. 1, 2019, págs. 59-82
  • Idioma: inglés
  • DOI: 10.4067/s0716-09172019000100059
  • Enlaces
  • Resumen
    • Let E be a uniformly smooth and uniformly convex real Banach space and E∗ be its dual space. We consider a multivalued mapping A : E → 2E∗ which is bounded, generalized Φ-strongly monotone and such that for all t > 0, the range R(Jp+tA) = E∗, where Jp (p > 1) is the generalized duality mapping from E into 2E∗ . Suppose A−1(0) = ∅, we construct an algorithm which converges strongly to the solution of 0 ∈ Ax. The result is then applied to the generalized convex optimization problem.

  • Referencias bibliográficas
    • H. A. Abass, F.U. Ogbuisi, O.T. Mewomo,Common solution of split equilibrium problem and fixed point problem with no prior knowledge of operator...
    • M. O. Aibinu, O. T. Mewomo, Algorithm for Zeros of monotone maps in Banach spaces, Proceedings of Southern Africa Mathematical Sciences Association...
    • M. O. Aibinu, O. T. Mewomo, Strong convergence theorems for strongly monotone mappings in Banach spaces, (Submitted to Hacettepe University...
    • Ya. Alber, Metric and generalized projection operators in Banach spaces: properties and applications, In: Kartsatos AG (ed) Theory and applications...
    • Y. Alber and I. Ryazantseva, Nonlinear Ill Posed Problems of Monotone Type, Springer, London, (2006).
    • D. Aussel, J. N. Corvellec and M. Lassonde, Mean value property and subdifferential criteria for lower semicontinuous functions, Trans. Am....
    • D. Aussel, J. N. Corvellec and M. Lassonde, Subdifferential characterization of quasiconvexity and convexity, J. Convex Anal., 1, pp. 195-201,...
    • D. Aussel and M. Fabian, Single-directional properties of quasimonotone operators, Set-Valued Var. Anal., 21, pp. 617-626, (2013). DOI 10.1007/s11228-013-0253-4.
    • C. E. Chidume and K. O. Idu, Approximation of zeros of bounded maximal monotone mappings, solutions of Hammerstein integral equations and...
    • I. Cioranescu,Geometry of Banach spaces, duality mappings and nonlinear problems, Kluwer Academic Publishers Group, Dordrecht, (1990).
    • F. H. Clarke, Optimization and Nonsmooth Analysis, WileyInterscience, New-York, (1983).
    • C. Diop, T. M. M. Sow, N. Djitte and C. E. Chidume, Constructive techniques for zeros of monotone mappings in certain Banach spaces, SpringerPlus,...
    • B. de Finetti, Sulle stratificazioni convesse, Annali di Matematica Pura ed Applicata, 30, pp. 173-183, (1949).
    • A.P. Farajzadeh1, A. Karamian1 and S. Plubtieng, On the translations of quasimonotone maps and monotonicity, J. of Ineq. Appl., 1 (192), (2012).
    • A. P. Farajzadeh, S. Plubtieng When a vector quasimonotone mapping is a vector monotone mapping, Optim Lett., 8, (2014), 2127-2134, (2014)...
    • W. Fenchel, Convex cones, sets and functions, Lecture Notes, Princeton University, Princeton, (1953).
    • N. Hadjisavvas, Translations of quasimonotone maps and monotonicity, Appl. Math. Lett., 19, pp. 913-915, (2006).
    • A. Hassouni, Quasi-monotone multifunctions; Applications to optimality conditions in quasi-convex programming, Numer. Funct. Anal. Optim.,...
    • A. Hassouni and A. Jaddar, Quasi-convex functions and applications to optimality conditions in nonlinear programming, Appl. Math. Lett., 14,...
    • Y. He, A relationship between pseudomonotone and monotone mappings, Appl. Math. Lett., 17, pp. 459-461, (2004).
    • G. Isac and D. Motreanu, Pseudomonotonicity and quasimonotonicity by translations versus monotonicity in Hilbert spaces, Aust. J. Math. Anal....
    • L. O. Jolaoso, F. U. Ogbuisi, O. T. Mewomo, An iterative method for solving minimization, variational inequality and fixed point problems...
    • L.O. Jolaoso, K.O. Oyewole, C. C. Okeke, O.T. Mewomo, A unified algorithm for solving split generalized mixed equilibrium problem and fixed...
    • S. Kamimura and W. Takahashi, Strong convergence of proximaltype algorithm in Banach space, SIAMJ Optim., 13 (3), pp. 938-945, (2002).
    • S. Karamardian and S. Schaible, Seven kinds of monotone maps, J. Optim. Theory Appl., 66, pp. 37-46, (1990).
    • S. Karamardian, S. Schaible and J.P Crouuzeix, Characterizations of generalized monotone maps, J. Optim. Theory Appl., 76, pp. 399-413, (1993).
    • S. Karlin, Mathematical Methods and Theory in Games, Programming, and Economics, Pergamon Press, London, (1959).
    • K. Kido, Strong convergence of resolvents of monotone operators in Banach spaces, Proc. Amer. Math. Soc., 103 (3), pp. 755-7588, (1988).
    • V. L. Levin, Quasiconvex functions and quasimonotone operators, J. Conv. Anal., 2 (1-2), pp. 167-172, (1995).
    • O.T. Mewomo and F.U. Ogbuisi, Convergence analysis of iterative method for multiple set split feasibility problems in certain Banach spaces,...
    • F. U. Ogbuisi, O.T. Mewomo, Convergence analysis of common solution of certain nonlinear problems, Fixed Point Theory, 19 (1), pp. 335-358,...
    • J. P. Penot, Are generalized derivatives useful for generalized convex functions?, University of Pau, pp. 1-44, (1997).
    • J. P. Penot and P. H. Quang, Generalized convexity of functions and generalized monotonicityof set-valued maps, J. Optim. Theory Appl., 92...
    • R. R. Phelps, Convex functions, monotone operators, and differentiability, 2nd edn. In: Lecture Notes in Math, vol. 1364. Springer-Verlag,...
    • S. Reich, A weak convergence theorem for the alternating method with Bregman distances, In: A. G, Kartsatos (Ed.), Theory and Applications...
    • R. T. Rockafellar, On the maximality of sums of nonlinear monotone operators, Trans. Amer. Math. Soc., 149, pp. 75-88, (1970).
    • R. T. Rockafellar, Generalized directional derivatives and subgradients of nonconvex functions, Canad. J. Math., 32, pp. 257-280, (1980).
    • H. K. Xu, Inequalities in Banach spaces with applications, Nonlinear Anal., 16 (12), pp. 1127-1138, (1991).
    • H. K. Xu, Iterative algorithms for nonlinear operators, J. London Math. Soc., 66 (1), pp. 240-256, (2002).
    • Z. B. Xu and G. F. Roach, Characteristic inequalities of uniformly convex and uniformly smooth Banach spaces, J. Math. Anal. Appl., 157, pp....
    • Y. Shehu and O.T. Mewomo, Further investigation into split common fixed point problem for demicontractive operators, Acta Math, Sin. (Engl....
    • C. Zaˇlinescu, On uniformly convex functions, J. Math. Anal. Appl., 95, pp. 344-374, (1983).

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno