Ir al contenido

Documat


On nearly Lindelöf spaces via generalized topology.

  • Roy, Bishwambhar [1]
    1. [1] Women’s Christian College.
  • Localización: Proyecciones: Journal of Mathematics, ISSN 0716-0917, ISSN-e 0717-6279, Vol. 38, Nº. 1, 2019, págs. 49-57
  • Idioma: inglés
  • DOI: 10.4067/s0716-09172019000100049
  • Enlaces
  • Resumen
    • In this paper a new class of sets termed as ωμ-regular open sets has been introduced and some of its properties are studied. We have introduced μ-nearly Lindelöfness in μ-spaces. We have shown that under certain conditions a μ-Lindelöf space [7] is equivalent to a μ-nearly Lindelöf space. Some properties of such spaces and some characterizations of such spaces in terms of ωμ -regular open sets are given.

  • Referencias bibliográficas
    • Á. Császár, Generalized topology, generalized continuity, Acta Math. Hungar., 96, pp. 351-357, (2002).
    • Á. Császár, Generalized open sets in generalized topologies, Acta Math. Hungar., 106, pp. 53-66, (2005).
    • Á. Császár, δ- and θ- modifications of generalized topologies, Acta math. Hungar., 120, pp. 275-279, (2008).
    • H. Z. Hdeib, ω-continuous functions, Dirasat Jour., 16 (2), pp. 136-153, (1989).
    • T. Noiri, Unified characterizations for modifications of R0 and R1 topological spaces, Rend. Circ. Mat. Palermo, 5 (2), pp. 29-42, (2006).
    • B. Roy, More on µ-Lindelöf spaces in µ-spaces, Questions and Answers in Gen. Topol., 33, pp. 25-31, (2015).
    • M. S. Sarsak, On µ-compact sets in µ-spaces, Questions and Answers in Gen. Topol., 31 (1), pp. 49-57, (2013).

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno