Ir al contenido

Documat


A general method for to decompose modular multiplicative inverse operators over Group of units.

  • Cortés Vega, Luis A. [1]
    1. [1] Antofagasta University.
  • Localización: Proyecciones: Journal of Mathematics, ISSN 0716-0917, ISSN-e 0717-6279, Vol. 37, Nº. 2, 2018, págs. 265-293
  • Idioma: inglés
  • DOI: 10.4067/s0716-09172018000200265
  • Enlaces
  • Resumen
    • In this article, the notion of modular multiplicative inverse operator (MMIO) ℐϱ : (Z/ϱZ)* → Z/ϱZ, ℐϱ (a) = a-1, where ϱ=b × d >3 with b, d ∈ N, is introduced and studied. A general method to decompose (MMIO) over group of units of the form (Z/ϱZ)* is also discussed through a new algorithmic functional version of Bezout's theorem. As a result, interesting decomposition laws for (MMIO)'s over (Z/ϱZ)* are obtained. Several numerical examples confirming the theoretical results are also reported.

  • Referencias bibliográficas
    • H. M. AL-Matari, S. J. Aboud, N. F. Shilbayeh, Fast Fraction-Integer Method for Computing Multiplicative Inverse, J. of Computing, 1, pp....
    • O. Arazi, H. Qi, On calculiting multiplicative inverses modulo 2m, IEEE Trans. Comput 57, pp. 1435—1438, (2008).
    • J—C. Bajard, L. Imbert, A full RNS implementation of RSA, IEEE Trans. Comput 53, pp. 769—774, (2004).
    • J. W. Bos, Constant time modular inversion, J Cryptogr Eng 4, pp. 275—281, (2014).
    • L. A. Cortés—Vega, A functional technique based on the Euclidean algorithm with applications to 2-D acoustic diffractal diffusers, J. Phys.:...
    • L. A. Cortés Vega, D. E. Rojas-Castro, Y.S. Santiago Ayala and S. C. RojasRomero, A technique based on the Euclidean algorithm and its applications...
    • T. J. Cox, P. D’Antonio, Acoustic Absorbers and Diffusers: Theory, Design and Application Spon Press, (2004).
    • Y. Dai, A. B. Borisov, K. Boyer, C. K. Rhodes, Computation with inverse states in a Finite Field FPα : The muon neutrino mass, the Unified-Strong-Electroweak...
    • Y. Dai, A.B. Borisov, K. Boyer, C.K. Rhodes, A p-Adic metric for particle mass scale organization with genetic divisors, Sandia National Laboratory,...
    • C. Ding, D. Pey, A. Salomaa, Chinese remainder Theorem: Applications in Computing, Coding, Cryptography, Singapure; World Scientific, (1999).
    • J-G. Dumas, On Newton-Rapshon iteration for multiplicative inverses modulo prime power, IEEE Trans. Comput 63, pp. 2106—2109, (2014).
    • J. Eichenauer, J. Lehn, A. Topuzoglu, A Nonlinear congruential pseudorandom numer generator with power two modulus, Math of Compt 51, pp....
    • Y. Elrich, K. Chang, A. Gordon, R. Ronen, O. Navon, M. Rooks, G.J. Hanon, DNA Sudoku-harnessing high-throughput sequencing for multiplexed...
    • M. A. Fiol, Finite Abelian groups and the Chinese remainder theorem, Discrete Math 67, pp. 101—105, (1987).
    • L. Hars, Modular inverse algorithms without multiplications for cryptographic applications, J Embedded Systems 032192, pp. 1—13, (2006).
    • M. Joye and P. Paillier, GCD-Free algorithms for computing modular inverses, C.D. Walter et. al. (Eds.):CHES 2003, LNCS 2779. Springer-Verlag...
    • B. S. Jr. Kaliski, The montgomery inverse and its applications, IEEE Trans. Comput 44, pp. 1064—1065 (1995).
    • D. E. Knuth, The art of computer programming, 2, Semi-Numerical Algorithms, 3rd Edition, Addison-Wesley, Reading, MA, (1997).
    • W. H. Ko, Modular inverse and reciprocity formula, arXiv:1304.6778v1, pp. 1-7, (2013).
    • R. Lórencz, New algorithm for classical modular inverse, in Kaliski, B.S., Jr., Ko ̧c, C.K., and Paar, C. (Eds.):CHES 2002, LNCS Springer-Verlag...
    • D. R. Hankerson, A. J. Menezes, S. A. Vanstone, Guide to Elliptic curve cryptography, Springer, New York, N.Y, USA (2004).
    • L. P. Montgomery, Modular multiplication without trial division, Math. Comp 44, pp. 519—52, (1985).
    • T. Niven, S. H. Zuckerman, H. Montgomery, An introduction to the theory of numbers, 5nd ed. Jhon Wiley-Sons, Inc. (1991).
    • S. Parthasarathy, An interesting property of multiplicative inverse in mod(M), Algologic Tech. Reports, pp. 1—3, (2012).
    • E. Sava ̧s, C. K. Ko ̧c, The montgomery modular inverse revisited, IEEE Trans. Comput 49, pp. 763—766, (2000).
    • E. Sava ̧s, M. Nasser, A. A-A Gutub, C. K. Ko ̧c, Efficient unified Montgomory inversion with multibit shifting, IEEE Proc. Comput. Digit....
    • M. R. Schroeder, Number theory and in Science and comunication, 3rd ed. Springer, Berlin, (1997).
    • R. J. Sullivan, Microwave Radar Imaging and Advanced Concepts, 2nd ed. Scitech Pub Inc., (2004).
    • C. E. Towers, D. P. Towers, J. D. C. Jones, Time efficient Chinese remainder theorem algorithm for full-field fringe phase analysis in multiwavelenght...
    • S. B. Verkhovsky, Enhanced Euclid algorithm for modular multiplicative inverse and its application in Cryptographic protocols, Int. J. Commun....
    • S. Vollala, B.S. Degum, N. Ramasubramanian, Hardware desing for multiplicative modular inverse based on table look up technique, IEEE Computing...
    • Y. Wang, Residue to binary converters based on net Chinese remainder theorems, IEEE Trans Circuits Syst. 47, pp. 197—204, (2000).
    • S. Wei, Computation of modular multiplicative inverse using residue signed-digit additions, IEEE Conf. Pub :2016 International SoC Design...

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno