Ir al contenido

Documat


Sequentially spaces and the finest locally K-convex of topologies having the same onvergent sequences.

  • Autores: Abdelkhalek El Amrani
  • Localización: Proyecciones: Journal of Mathematics, ISSN 0716-0917, ISSN-e 0717-6279, Vol. 37, Nº. 1, 2018, págs. 153-169
  • Idioma: inglés
  • DOI: 10.4067/s0716-09172018000100153
  • Enlaces
  • Resumen
    • The present paper is concerned with the concept of sequentially topologies in non-archimedean analysis. We give characterizations of such topologies.

  • Referencias bibliográficas
    • R. Ameziane Hassani and M. Babahmed, Topologies polaires compatibles avec une dualité séparante sur un corps valué non-archimédien, Proyecciones....
    • J. R. Boone and F.Siwiec, Sequentially quotient mappings, Czechoslovak Mathematical Journal, Vol. 26, No. 2, pp. 174-182, (1976).
    • J. Boos and T. Leiger, Duals pairs of sequence spaces, IJMMS 28, No.1, pp. 9-23, (2001).
    • M. C. Cueva and C. T. Maia Vinagre, Sequences in non-archimedean locally convex spaces, Indian J. pure appl. Math., 25(9): pp. 955-962, (1994).
    • N. De Grande-De Kimpe, Perfect locally K-convex sequence spaces, Indag. Math. (33), pp. 371-482, (1971).
    • A. El amrani, R. Ameziane Hassani and M. Babahmed, Topologies on sequence spaces in non-archimedean analysis, J. of Mathematical Sciences:...
    • A. El Amrani, R. Ameziane Hassani and M. Babahmed, Polar topologies in sequence spaces in non-archimedean analysis. Universidad Catolica del...
    • J. R. Ferrer, I. Morales, L. M. Sanchez Ruiz, Sequential convergence in topological vector spaces, Topology and its applications 108, pp....
    • S. P. Franklin, Spaces in which sequences suffice,” Fundamenta Mathematicae 67, pp. 107-116, (1965).
    • S. P. Franklin, ”Spaces of which sequences suffice, II,” Fund. Math. 61, pp. 51-56, (1967).
    • A. Goreham, Sequential convergence in topological spaces, arXiv:math/0412558v2-[math.GN] 10 April, (2016).
    • D.A. Gregory, Vector sequence spaces, Ph.D thesis, University of Machigan, (1967).
    • A. K. Katsaras and V. Benekas, Sequential convergence in topological vector spaces, Georgian mathematical journal: Vol. 2, No. 2, pp. 151-164...
    • A. F. Monna, Analyse non- archimédienne, Springer-Verlag, band 56, (1970).
    • W. H. Schikhof, Locally convex spaces over nonspherically complete valued field, I, II, Bull. Soc. Math. Belg. sér. B 38, pp. 187-224 (1986).
    • H. H. Schaefer, Topological vector spaces, Springer-Verlag New-York, herdlberg Berlin, (1971).
    • R. F. Snipes, T-sequential topological spaces, Fundamenta Mathematicae, T. LXXVII, pp. 95-98, (1970).
    • J. Van-tiel, Espaces localement K-convexes, I-III. Proc. Kon. Ned. Akad. van Wetensch. A 68, pp. 249-289, (1965).
    • M. Venkataramen, Directed sets in topology, Math. student 30, pp. 99-100, (1962).
    • S. Warner, Topological Fields, North-Holland Mathematics studies 157, (1989).
    • J. H. Webb, Sequential convergence in locally convex spaces, Proc. Cambridge Philos. Soc. 64, pp. 341-364, (1968).

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno