Ir al contenido

Documat


Some new Ostrowski type fractional integral inequalities for generalized (s,m, φ)-preinvex functions via Caputo k-fractional derivatives.

  • Autores: Artion Kashuri, Rozana Liko
  • Localización: Proyecciones: Journal of Mathematics, ISSN 0716-0917, ISSN-e 0717-6279, Vol. 37, Nº. 1, 2018, págs. 133-151
  • Idioma: inglés
  • DOI: 10.4067/s0716-09172018000100133
  • Enlaces
  • Resumen
    • In the present paper, the notion of generalized (s, m, φ)-preinvex function is applied to establish some new generalizations of Ostrowski type integral inequalities via Caputo k-fractional derivatives. At the end, some applications to special means are given.

  • Referencias bibliográficas
    • Ç. Yildiz, M. E. Özdemir and M. Z. Sarikaya, New generalizations of Ostrowski-like type inequalities for fractional integrals, Kyungpook Math....
    • A. Kashuri and R. Liko, Ostrowski type fractional integral inequalities for generalized (s, m, φ)-preinvex functions, Aust. J. Math. Anal....
    • A. Kashuri and R. Liko, Generalizations of Hermite-Hadamard and Ostrowski type inequalities for MTm-preinvex functions, Proyecciones, 36,...
    • M. Alomari, M. Darus, S. S. Dragomir and P. Cerone, Ostrowski type inequalities for functions whose derivatives are s-convex in the second...
    • R. P. Agarwal, M. J. Luo and R. K. Raina, On Ostrowski type inequalities, Fasc. Math., 204, pp. 5-27, (2016).
    • S. S. Dragomir, On the Ostrowski’s integral inequality for mappings with bounded variation and applications, Math. Ineq. & Appl., 1, (2)...
    • S. S. Dragomir, The Ostrowski integral inequality for Lipschitzian mappings and applications, Comput. Math. Appl., 38, pp. 33-37, (1999).
    • S. S. Dragomir, Ostrowski-type inequalities for Lebesgue integral: A survey of recent results, Aust. J. Math. Anal. Appl., 14, (1), pp. 1-287,...
    • G. Farid, Some new Ostrowski type inequalities via fractional integrals, Int. J. Anal. App., 14, (1), pp. 64-68, (2017).
    • W. Liu, W. Wen and J. Park, Ostrowski type fractional integral inequalities for MT-convex functions, Miskolc Math. Notes, 16, (1), pp. 249-256,...
    • M. Matloka, Ostrowski type inequalities for functions whose derivatives are h-convex via fractional integrals, Journal of Scientific Research...
    • A. A. Kilbas, H. M. Srivastava and J. J. Trujillo, Theory and applications of fractional differential equations, North-Holland Math. Stud.,...
    • G. Farid, A. Javed and A. U. Rehman, On Hadamard inequalities for ntimes differentiable functions which are relative convex via Caputo k-fractional...
    • Z. Liu, Some Ostrowski-Grüss type inequalities and applications, Comput. Math. Appl., 53, pp. 73-79, (2007).
    • M. E. Özdemir, H. Kavurmac and E. Set, Ostrowski’s type inequalities for (α, m)-convex functions, Kyungpook Math. J., 50, pp. 371-378, (2010).
    • B. G. Pachpatte, On an inequality of Ostrowski type in three independent variables, J. Math. Anal. Appl., 249, pp. 583-591, (2000).
    • B. G. Pachpatte, On a new Ostrowski type inequality in two independent variables, Tamkang J. Math., 32, (1), pp. 45-49, (2001).
    • A. Rafiq, N. A. Mir and F. Ahmad, Weighted Čebyšev-Ostrowski type inequalities, Applied Math. Mechanics (English Edition), 28, (7), pp. 901-906,...
    • N. Ujević, Sharp inequalities of Simpson type and Ostrowski type, Comput. Math. Appl., 48, pp. 145-151, (2004)
    • L. Zhongxue, On sharp inequalities of Simpson type and Ostrowski type in two independent variables, Comput. Math. Appl., 56, pp. 2043-2047,...
    • T. Abdeljawad, On conformable fractional calculus, J. Comput. Appl. Math., 279, pp. 57-66, (2015).
    • Z. Dahmani, New inequalities in fractional integrals, Int. J. Nonlinear Sci., 9, (4), pp. 493-497, (2010).
    • Z. Dahmani, L. Tabharit and S. Taf, Some fractional integral inequalities, Nonlinear. Sci. Lett. A, 1, (2), pp. 155-160, (2010).
    • Z. Dahmani, On Minkowski and Hermite-Hadamard integral inequalities via fractional integration, Ann. Funct. Anal., 1, (1), pp. 51-58, (2010).
    • Z. Dahmani, L. Tabharit and S. Taf, New generalizations of Grüss inequality using Riemann-Liouville fractional integrals, Bull. Math. Anal....
    • U. N. Katugampola, A new approach to generalized fractional derivatives, Bulletin Math. Anal. Appl., 6, (4), pp. 1-15, (2014).
    • R. Khalil, M. Al Horani, A. Yousef and M. Sababheh, A new definition of fractional derivative, J. Comput. Appl. Math., 264, pp. 65-70, (2014).
    • S. D. Purohit and S. L. Kalla, Certain inequalities related to the Chebyshev’s functional involving Erdelyi-Kober operators, Scientia Series...
    • R. K. Raina, On generalized Wright’s hypergeometric functions and fractional calculus operators, East Asian Math. J., 21, (2), pp. 191-203,...
    • M. Z. Sarikaya, On the Ostrowski type integral inequality, Acta Math. Univ. Comenianae, 79, (1), pp. 129-134, (2010).
    • E. Set, A. Gözpnar and J. Choi, Hermite-Hadamard type inequalities for twice differentiable m-convex functions via conformable fractional...
    • T. S. Du, J. G. Liao and Y. J. Li, Properties and integral inequalities of Hadamard-Simpson type for the generalized (s, m)-preinvex functions,...
    • H. Hudzik and L. Maligranda, Some remarks on s-convex functions, Aequationes Math., 48, pp. 100-111, (1994).
    • M. Ahmadmir and R. Ullah, Some inequalities of Ostrowski and Grüss type for triple integrals on time scales, Tamkang J. Math., 42, (4), pp....
    • S. S. Dragomir and S. Wang, A new inequality of Ostrowski’s type in L1-norm and applications to some special means and to some numerical quadrature...
    • S. S. Dragomir and S. Wang, An inequality of Ostrowski-Grüss type and its applications to the estimation of error bounds for some special...
    • Z. Liu, Some companions of an Ostrowski type inequality and applications, J. Inequal. in Pure and Appl. Math, 10, (2), Art. 52, 12 pp.......
    • D. S. Mitrinovic, J. E. Pečarić and A. M. Fink, Classical and new inequalities in analysis, Kluwer Academic Publishers, Dordrecht, (1993).
    • T. Antczak, Mean value in invexity analysis, Nonlinear Anal., 60, pp. 1473-1484, (2005).
    • X. M. Yang, X. Q. Yang and K. L. Teo, Generalized invexity and generalized invariant monotonicity, J. Optim. Theory Appl., 117, pp. 607-625,...
    • R. Pini, Invexity and generalized convexity, Optimization, 22, pp. 513-525, (1991).
    • M. Tun¸ c, Ostrowski type inequalities for functions whose derivatives are MT-convex, J. Comput. Anal. Appl., 17, (4), pp. 691-696, (2014).
    • P. S. Bullen, Handbook of Means and Their Inequalities, Kluwer Academic Publishers, Dordrecht, (2003).

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno