Ir al contenido

Documat


On the solution of functional equations of Wilson's type on monoids.

  • Autores: Iz-iddine el Fassi, Abdellatif Chahbi, S. Kabbaj
  • Localización: Proyecciones: Journal of Mathematics, ISSN 0716-0917, ISSN-e 0717-6279, Vol. 36, Nº. 4, 2017, págs. 641-651
  • Idioma: inglés
  • DOI: 10.4067/s0716-09172017000400641
  • Enlaces
  • Resumen
    • español

      Let S be a monoid, C be the set of complex numbers, and let σ,τ ∈ Antihom(S,S) satisfy τ ○ τ =σ ○ σ= id. The aim of this paper is to describe the solution ⨍,g: S → C of the functional equation       in terms of multiplicative and additive functions.

    • English

      Let S be a monoid, C be the set of complex numbers, and let σ,τ ∈ Antihom(S,S) satisfy τ ○ τ =σ ○ σ= id. The aim of this paper is to describe the solution ⨍,g: S → C of the functional equation ⨍(xσ(y)) + ⨍(τ(y)x) = 2f(x)g(y), x, y ∈ S, in terms of multiplicative and additive functions.

  • Referencias bibliográficas
    • J. Aczél and J. Dhombres, Functional equations in several variables, Cambridge University Press, New York, (1989).
    • A. Chahbi, B. Fadli and S. Kabbaj, A generalization of the symmetrized multiplicative Cauchy equation, ActaMath. Hungar., 149, pp. 1--7, (2016).
    • B. R. Ebanks and H. Stetkær, On Wilson's functional equations, Aequat. Math., 89, pp. 339--354, (2015).
    • B. R. Ebanks and H. Stetkær, d'Alembert's other functional equation on monoids with an involution, Aequationes Math. 89, pp. 187--206,...
    • Iz. EL-Fassi, A. Chahbi and S. Kabbaj, The Solution of a class functional equations on semi-groups, Filomat, to appear.
    • PL. Kannappan, Functional equations and inequalities with applications, Springer, New York, (2009).
    • H. Stetkær, On multiplicative maps, semi-group Forum, 63 (3), pp. 466-468, (2001).
    • H. Stetkær, On a variant of Wilson's functional equation on groups, Aequat. Math., 68, pp. 160--176, (2004).
    • H. Stetkær, Functional equations on groups, World Scientific Publishing Co, Singapore, (2013).
    • H. Stetkær, A variant of d'Alembert's functional equation, Aequationes Math. 89, pp. 657-662, (2015).
    • H. Stetkær, A link between Wilson's and d’Alembert's functional equations, Aequat. Math. 90, pp. 407--409, (2015).

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno