Ir al contenido

Documat


Some results on SD-Prime cordial labeling.

  • Autores: A. Lourdusamy, F. Patrick
  • Localización: Proyecciones: Journal of Mathematics, ISSN 0716-0917, ISSN-e 0717-6279, Vol. 36, Nº. 4, 2017, págs. 601-614
  • Idioma: inglés
  • DOI: 10.4067/s0716-09172017000400601
  • Enlaces
  • Resumen
    • Given a bijection ʄ : V(G) → {1,2, …,|V(G)|}, we associate 2 integers S = ʄ(u)+ʄ(v) and D = |ʄ(u)-ʄ(v)| with every edge uv in E(G). The labeling ʄ induces an edge labeling ʄ' : E(G) → {0,1} such that for any edge uv in E(G), ʄ '(uv)=1 if gcd(S,D)=1, and ʄ ' (uv)=0 otherwise. Let eʄ ' (i) be the number of edges labeled with i ∈ {0,1}. We say ʄ is SD-prime cordial labeling if |eʄ '(0)-e ʄ' (1)| ≤ 1. Moreover G is SD-prime cordial if it admits SD-prime cordial labeling. In this paper, we investigate the SD-prime cordial labeling of some derived graphs.

  • Referencias bibliográficas
    • J. A. Gallian, A Dyamic Survey of Graph Labeling, The Electronic J. Combin., 17, (2014) # DS6.
    • F. Harary, Graph Theory, Addison-wesley, Reading, Mass, (1972).
    • G. C. Lau, H. H. Chu, N. Suhadak, F. Y. Foo and H. K. Ng, On SD-Prime Cordial Graphs, International Journal of Pure and Applied Mathematics,...
    • G. C. Lau and W. C. Shiu, On SD-Prime Labeling of Graphs, Utilitas Math., accepted.
    • G. C. Lau, W.C. Shiu, H.K. Ng, C. D. Ng and P. Jeyanthi, Further Results on SD-Prime Labeling, JCMCC, 98, pp. 151-170, (2016).

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno