Ir al contenido

Documat


On Triple sequence space of Bernstein operator of Rough I- convergence pre-cauchy sequences.

  • Autores: Ayhan Esi, Nary Subramanian, Ayten Esi
  • Localización: Proyecciones: Journal of Mathematics, ISSN 0716-0917, ISSN-e 0717-6279, Vol. 36, Nº. 4, 2017, págs. 567-587
  • Idioma: inglés
  • DOI: 10.4067/s0716-09172017000400567
  • Enlaces
  • Resumen
    • We introduce and study some basic properties of rough I- convergentpre-Cauchy sequences of triple sequence of Bernstein polynomials and also study the set of all rough I- limits of a pre-Cauchy sequence of triple sequence of Bernstein polynomials and relation between analytic ness and rough I- statistical convergence of pre-Cauchy sequence of a triple sequences of Bernstein polynomials .

  • Referencias bibliográficas
    • S. Aytar, Rough statistical convergence, Numer. Funct. Anal. Optimiz, 29(3-4), pp. 291-303, (2008).
    • S. Aytar, The rough limit set and the core of a real sequence, Numer. Funct. Anal. Optimiz, 29 (3-4), pp. 283-290, (2008).
    • A. Esi , On some triple almost lacunary sequence spaces defined by Orlicz functions, Research and Reviews: Discrete Mathematical Structures,...
    • A. Esi and M. Necdet Catalbas, Almost convergence of triple sequences, Global Journal of Mathematical Analysis, 2 (1), pp. 6-10, (2014).
    • A. Esi and E. Savas, On lacunary statistically convergent triple sequences in probabilistic normed space, Appl.Math.and Inf.Sci., 9 (5), pp....
    • S. Araci and M. Acikgoz, Statistical Convergence of Bernstein Operators, Appl.Math.and Inf.Sci., 10 (6), pp. 2083-2086, (2016).
    • A. J. Dutta, A. Esi and B.C. Tripathy, Statistically convergent triple sequence spaces defined by Orlicz function, Journal of Mathematical...
    • S. Debnath, B. Sarma and B.C. Das, Some generalized triple sequence spaces of real numbers, Journal of nonlinear analysis and optimization,...
    • E. Dündar, C. Cakan, Rough I- convergence, Demonstratio Mathematica, Accepted.
    • H.X. Phu, Rough convergence in normed linear spaces , Numer. Funct. Anal. Optimiz, 22, pp. 199-222, (2001).
    • H.X. Phu, Rough continuity of linear operators, Numer. Funct. Anal. Optimiz, 23, pp. 139-146, (2002).
    • H.X. Phu, Rough convergence in infinite dimensional normed spaces, Numer. Funct. Anal. Optimiz, 24, pp. 285-301, (2003).
    • A. Sahiner, M. Gurdal and F.K. Duden, Triple sequences and their statistical convergence, Selcuk J. Appl. Math., 8 No. (2), pp. 49-55, (2007).
    • A. Sahiner, B.C. Tripathy , Some I related properties of triple sequences, Selcuk J. Appl. Math., 9 No. (2), pp. 9-18, (2008).
    • N. Subramanian and A. Esi, The generalized tripled difference of χ3 sequence spaces, Global Journal of Mathematical Analysis, 3 (2), pp. 54-60,...
    • B. C. Tripathy and R. Goswami, Vector valued multiple sequences defined by Orlicz functions, Boletim da Sociedade Paranaense de Matematica,...
    • B. C. Tripathy and R.Goswami, Multiple sequences in probabilistic normed spaces, Afrika Matematika, 26 (5-6), pp. 753-760, (2015).
    • B. C. Tripathy and R.Goswami, Fuzzy real valued p-absolutely summmable multiple sequences in probabilistic normed spaces, Afrika Matematika,...
    • B. C. Tripathy and R.Goswami, On triplhe sequences of real numbers in probabilistic normed spaces, Proyecciones Jour.Math., 33 (2), pp. 157-174,...

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno