Ir al contenido

Documat


Positive periodic solutions for neutral functional differential systems.

  • Autores: Ernest Yankson, Samuel E. Assabil
  • Localización: Proyecciones: Journal of Mathematics, ISSN 0716-0917, ISSN-e 0717-6279, Vol. 36, Nº. 3, 2017, págs. 423-434
  • Idioma: inglés
  • DOI: 10.4067/s0716-09172017000300423
  • Enlaces
  • Resumen
    • We study the existence of positive periodic solutions of a system of neutral differential equations. In the process we construct two map- pings in which one is a contraction and the other compact. A Kras- noselskii’s fixed point theorem is then used in the analysis.

  • Referencias bibliográficas
    • T. A. Burton, Stability by Fixed Point Theory for functional Differential Equations, Dover, New York, (2006).
    • E. Beretta, F. Solimano, Y. Takeuchi, A mathematical model for drug administration by using the phagocytosis of red blood cells, J. Math Biol....
    • Y. Chen, New results on positive periodic solutions of a periodic integro-differential competition system, Appl. Math. Comput., 153 (2), pp....
    • F. D. Chen, Positive periodic solutions of neutral Lotka-Volterra system with feedback control, Appl. Math. Comput., 162 (3), pp. 1279- 1302,...
    • F. D. Chen, Periodicity in a nonlinear predator-prey system with state dependent delays, Acta Math. Appl. Sinica English Series, 21 (1) (2005),...
    • F. D. Chen, S. J. Lin, Periodicity in a logistic type system with several delays, Comput. Math. Appl., 48 (1-), pp. 35-44, (2004).
    • F. D. Chen, F. X. Lin, X. X. Chen, Sufficient conditions for the existence of positive periodic solutions of a class of neutral delay models...
    • M. Fan, K. Wang, Global periodic solutions of a generalized n-species Gilpin-Ayala competition model, Comput. Math. Appl., 40, pp. 1141- 1151,...
    • M. Fan, P. J. Y. Wong, Periodicity and stability in a periodic n-species Lotka-Volterra competition system with feedback controls and deviating...
    • M. E. Gilpin, F. J. Ayala, Global Models of Growth and Competition, Proc. Natl. Acad. Sci., USA 70, pp. 3590-3593, (1973).
    • A. Datta and J. Henderson, Differences and smoothness of solutions for functional difference equations, Proceedings Difference Equations 1, pp....
    • J. Henderson and A. Peterson, Properties of delay variation in solutions of delay difference equations, Journal of Differential Equations 1,...
    • D. Jiang, J. wei, B. Zhang, Positive periodic solutions of functional differential equations and population models, Electron. J. Diff.Eqns.,...
    • M. A. Krasnosel’skii, Positive solutions of operator Equations Noordhoff, Groningen, (1964).
    • L. Y. Kun, Periodic solution of a periodic neutral delay equation, J. Math. Anal. Appl.,, 319, pp. 315-325, (2006).
    • Y. Li, Y. Kuang, Periodic solutions of periodic delay Lotka-Volterra equations and systems, J. Math. Anal. Appl., 255, pp. 260-280, (2001).
    • M. Maroun and Y. Raffoul, Periodic solutions in nonlinear neutral difference equations with functional delay, Journal of Korean Mathematical...
    • Y. Raffoul, Periodic solutions for scaler and vector nonlinear difference equations, Pan-American Journal of Mathematics 9, pp. 97-111, (1999).
    • Y. N. Raffoul, Periodic solutions for neutral nonlinear differential equations with delay, Electron. J. Diff. Eqns., Vol. No. 102, pp. 1-7, (2003).
    • Y. Raffoul, Positive periodic solutions in neutral nonlinear differential equations, Electronic Journal of Qualitative Theory of Differential...
    • Y. Raffoul, Existence of positive periodic solutions in neutral nonlinear equations with functional delay, Rocky Mount. Journal of Mathematics...
    • N. Zhang, B. Dai, Y. Chen, Positive periodic solutions of nonautonomous functional differential systems, J. Math. Anal., 333, pp. 667- 678,...

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno