Ir al contenido

Documat


On some generalized geometric difference sequence spaces.

  • Autores: Khirod Boruah, Bipan Hazarika
  • Localización: Proyecciones: Journal of Mathematics, ISSN 0716-0917, ISSN-e 0717-6279, Vol. 36, Nº. 3, 2017, págs. 373-395
  • Idioma: inglés
  • DOI: 10.4067/s0716-09172017000300373
  • Enlaces
  • Resumen
    • In this paper we introduce the generalized geometric difference sequence spaces    and to prove that these are Banach spaces. Then we prove some inclusion properties. Also we compute their dual spaces.

       

  • Referencias bibliográficas
    • A. E. Bashirov, E. Misirli, Y. Tandoğdu, A. Özyapici, On modeling with multiplicative differential equations, Appl. Math. J. Chinese Univ....
    • A. E. Bashirov, E. M. Kurpinar, A. Özyapici, Multiplicative Calculus and its applications, J. Math. Anal. Appl. 337, pp. 36-48, (2008).
    • A. E. Bashirov, M. Riza, On Complex multiplicative differentiation, TWMS J. App. Eng. Math. 1 (1), pp. 75-85, (2011).
    • K. Boruah, B. Hazarika, Application of Geometric Calculus in Numerical Analysis and Difference Sequence Spaces, J. Math. Anal. Appl 449 (2),...
    • A. F. Çakmak, F.Başar, On Classical sequence spaces and non-Newtonian calculus, J. Inequal. Appl. 2012, Article ID 932734, 12pp., (2012).
    • R. Çolak, M. Et, On some generalized difference sequence spaces and related matrix transformations, Hokkaido Math. J. 26, pp. 483-492, (1997).
    • M. Et, Rifat Çolak, On Some Generalized Difference Sequence Spaces, Soochow J. Math. 21 (4), pp. 377-386....
    • D. J. H. Garling, The - and -duality of sequence spaces, Proc. Camb. Phil. Soc. 63, pp. 963-981, (1967).
    • M. Grossman, R. Katz, Non-Newtonian Calculus, Lee Press, Piegon Cove, Massachusetts, (1972).
    • M. Grossman, Bigeometric Calculus: A System with a scale-Free Derivative, Archimedes Foundation, Massachusetts, (1983).
    • J. Grossman, M. Grossman, R. Katz, The First Systems of Weighted Differential and Integral Calculus}, University of Michigan, (1981).
    • J. Grossman, Meta-Calculus: Differential and Integral, University of Michigan, (1981).
    • H. Kizmaz, On Certain Sequence Spaces, Canad. Math. Bull. 24 (2), pp. 169-176, (1981).
    • G. Köthe, Toplitz, Vector Spaces I, Springer-Verlag, (1969).
    • G. Köthe, O. Toplitz, Linear Raume mit unendlichen koordinaten und Ring unendlichen Matrizen}, J. F. Reine u. Angew Math. 171, pp. 193-226,...
    • I. J. Maddox, Infinite Matrices of Operators, Lecture notes in Mathematics, 786, Springer-Verlag, (1980).
    • D. Stanley, A multiplicative calculus, Primus IX 4, pp. 310-326, (1999).
    • S. Tekin, F. Başar, Certain Sequence spaces over the non-Newtonian complex field, Abstr. Appl. Anal. 2013(2013) Article ID 739319, 11 pages....
    • C. Türkmen, F. Başar, Some Basic Results on the sets of Sequences with Geometric Calculus, Commun. Fac. Fci. Univ. Ank. Series A1. G1(2),...
    • A. Uzer, Multiplicative type Complex Calculus as an alternative to the classical calculus, Comput. Math. Appl. 60, pp. 2725-2737, (2010).

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno