Ir al contenido

Documat


Some results on skolem odd difference mean labeling

  • Jeyanthi, P. [1] ; Kalaiyarasi, R. [2] ; Ramya, D. [3] ; Devi, T. Saratha [4]
    1. [1] Govindammal Aditanar College for Women.
    2. [2] Dr. Sivanthi Aditanar College of Engineering.
    3. [3] Government Arts College for Women.
    4. [4] G. Venkataswamy Naidu College.
  • Localización: Proyecciones: Journal of Mathematics, ISSN 0716-0917, ISSN-e 0717-6279, Vol. 35, Nº. 4, 2016, págs. 405-415
  • Idioma: inglés
  • DOI: 10.4067/S0716-09172016000400004
  • Enlaces
  • Resumen
    • Let G = (V, E) be a graph with p vertices and q edges. A graph G is said to be skolem odd difference mean if there exists a function f : V(G) → {0, 1, 2, 3,...,p+3q — 3} satisfying f is 1-1 and the induced map f * : E(G) →{1, 3, 5,..., 2q-1} defined by f * (e) = [(f(u)-f(v))/2] is a bijection. A graph that admits skolem odd difference mean labeling is called skolem odd difference mean graph. We call a skolem odd difference mean labeling as skolem even vertex odd difference mean labeling if all vertex labels are even. A graph that admits skolem even vertex odd difference mean labeling is called skolem even vertex odd difference mean graph.In this paper we prove that graphs B(m,n) : Pw, (PmõSn), mPn, mPn U tPs and mK 1,n U tK1,s admit skolem odd difference mean labeling. If G(p, q) is a skolem odd differences mean graph then p≥ q. Also, we prove that wheel, umbrella, Bn and Ln are not skolem odd difference mean graph.

  • Referencias bibliográficas
    • Citas [1] F. Harary, Graph theory, Addison Wesley, Massachusetts, (1972).
    • [2] Joseph A. Gallian, A Dynamic Survey of Graph Labeling, The Electronic Journal of Combinatorics, (2015), #DS6.
    • [3] K. Manickam and M. Marudai, Odd mean labelings of graphs, Bulletin of Pure and Applied Sciences, 25E (1), pp. 149-153, (2006).
    • [4] K. Murugan, A. Subramanaian, Skolem difference mean labeling of Hgraphs, International Journal of Mathematics and Soft Computing, 1, (1),...
    • [5] D. Ramya and M. Selvi, On skolem difference mean labeling of some trees, International Journal of Mathematics and Soft Computing, 4 (2),...
    • [6] D. Ramya, M. Selvi and R. Kalaiyarasi, On skolem difference mean labeling of graphs, International Journal of Mathematical Archive, 4...
    • [7] D. Ramya, R. Kalaiyarasi and P. Jeyanthi, On skolem odd difference mean labeling of graphs, Journal of Algorithms and Computing, (45),...
    • [8] S. Somasundaram and R. Ponraj, Mean labelings of graphs, National Academy Science Letter, (26), pp. 210-213, (2003).

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno