Ir al contenido

Documat


Wavelets Defined Over Non Nested Tetrahedral Grids: a Theoretical Approach

  • Boscardin, Liliana B. [1] ; Castro, Silvia M. [1] ; Castro, Liliana R. [1]
    1. [1] Universidad Nacional del Sur

      Universidad Nacional del Sur

      Argentina

  • Localización: Journal of Computer Science and Technology, ISSN-e 1666-6038, Vol. 19, Nº. 1, 2019 (Ejemplar dedicado a: Forty-Nineth; e08), págs. 8-21
  • Idioma: inglés
  • DOI: 10.24215/16666038.19.e02
  • Títulos paralelos:
    • Wavelets Definidas sobre Grillas Tetraédricas no Anidadas: un Abordaje Teórico
  • Enlaces
  • Resumen
    • español

      La principal contribuci´on de este art´ıculo es la definici´on de wavelets sobre grillas tetra´edricas no anidadas lo cual permite la representaci´on de funciones definidas sobre una tetraedrizaci´on irregular. De esta manera es posible representar distintos atributos de un objeto 3D como pueden ser su color, su densidad, su brillo, etc. Esta representaci´on consiste de un conjunto de coeficientes correspondientes a una resoluci´on m´as gruesa y de un conjunto de coeficientes de detalle que miden el error entre dos aproximaciones sucesivas. En este trabajo se presentan la matriz de an´alisis, que se necesita para pasar de una resoluci´on m´as fina a una m´as gruesa, y la matriz de an´alisis, necesaria para pasar de una resoluci´on gruesa a una m´as fina. El marco general de trabajo para todo el art´ıculo es el de grillas tetra´edricas no anidadas.

    • English

      The main contribution of this paper is the definition of wavelets over non nested tetrahedral grids, allowing the representation of functions defined on an a irregular tetrahedralization. In this way, it is possible to represent different attributes of a 3D object such as its color, brightness, density, etc. This representation consists of a set of coefficients corresponding to a coarse resolution followed by a set of detail coefficients that measures the error between two successive approximations. In this work the analysis matrix that allows going from a fine to a coarser resolution and the synthesis matrix needed for going from a coarse resolution to a finer one, are presented. All this is within the framework of non nested tetrahedral grids.

  • Referencias bibliográficas
    • S. Mallat, “Multiresolution approximations and wavelet orthonormal basis of L2 (R),” Trans. of the American Math. Soc., vol. 315, no. 1, pp....
    • I. Daubechies, Ten Lectures on Wavelets. Philadelphia, Pennsylvania: Society for Industrial and Applied Mathematics SIAM, 1992.
    • C. Chui, An Introduction to Wavelets. Charles Chui, Series Editor, Academic Press, 1992.
    • W. Sweldens, “The lifting scheme: a construction of second generation wavelets,” Tech. Rep. 1994:7, Industrial Mathematics Initiative, Dept....
    • D. Donoho, “Interpolating wavelet transforms,” Preprint, Departament of Statistics, Stanford University, 1992.
    • D. Donoho, “On minimum entropy segmentation,” Preprint, Departament of Statistics, Stanford University, 1993.
    • D. Donoho, Smooth wavelets descompositions with blocky coefficient kernels. Recent advances in wavelet analysis, New York: Academic Press,...
    • J. M. Lounsbery, Multiresolution Analysis for Surfaces of Arbitrary Topological Type. PhD thesis, University of Washington, Washington, Seattle,...
    • M. Girardi and W. Sweldens, “A new class of unbalanced Haar wavelets that form an unconditional basis for Lp on general masure spaces,” J....
    • P. Schr¨oeder and W. Sweldens, “Spherical wavelets: Efficiently representing functions on the sphere,” ACM Proceedings of SIGGRAPH’95, pp....
    • A. Gerussi, Analyse Multir´esolution Non Emboˆıt´ee. Applications `a la visualisation Scientifique. PhD thesis, Universit´e Joseph Fourier,...
    • G.Bonneau, S. Hahmann, and G. Nielson, “BLac wavelets: a multiresolution analysis with non nested spaces,” IEEE Visualization’96, pp. 43–48,...
    • J. M. Maubach, “Local bisection refinement for n-simplicial grids generated by reflection,” SIAM J. Sci. Comput., vol. 16, pp. 210–227, 1995.
    • L. B. Boscardin, “Wavelets definidas sobre vol´umenes.” Tesis de Magister, Universidad Nacional del Sur, Bah´ıa Blanca, Argentina, 2001.
    • L. Boscardin, S. Castro, and L. Castro, “Haar like wavelets over tetrahedra,” Journal of Computer Science & Technology, vol. 17, no. 2,...
    • J. Bey, “Tetrahedral grid refinement,” Computing, vol. 55, no. 4, pp. 355–378, 1995.
    • L. B. S. Castro, L. Castro and A. D. Giusti, “Multiresolution wavelet based model for large irregular volume data sets,” in Proceedings of...
    • E. Danovaro, L. De Floriani, M. Lee, and H. Samet, “Multiresolution tetrahedral meshes: an analysis and a comparison,” in IEEE SMI’02, pp....
    • E. Danovaro and L.De Floriani, “Half-edge multitessellation: a compact representation for multiresolution tetrahedral meshes,” in Proceedings...
    • P. Cignoni, D. Costanza, C. Montani, C. Rocchini, and R. Scopigno, “Simplification of tetrahedral volume with accurate error evaluation,”...

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno