Ir al contenido

Documat


Elliptic equations involving the p-Laplacian and a gradient term having natural growth

  • Djairo Guedes de Figueiredo [3] ; Jean-Pierre Gossez [1] ; Humberto Ramos Quoirin [2] ; Pedro Ubilla [2]
    1. [1] Université Libre de Bruxelles

      Université Libre de Bruxelles

      Arrondissement Brussel-Hoofdstad, Bélgica

    2. [2] Universidad de Santiago de Chile

      Universidad de Santiago de Chile

      Santiago, Chile

    3. [3] IMECC - UNICAMP, Campinas
  • Localización: Revista matemática iberoamericana, ISSN 0213-2230, Vol. 35, Nº 1, 2019, págs. 173-194
  • Idioma: inglés
  • DOI: 10.4171/rmi/1052
  • Texto completo no disponible (Saber más ...)
  • Resumen
    • We investigate the problem −Δpu=g(u)|∇u|p+f(x,u)u>0u=0in Ω,in Ω,on ∂Ω, in a bounded smooth domain Ω⊂RN. Using a Kazdan–Kramer change of variable we reduce this problem to a quasilinear one without gradient term and therefore approachable by variational methods. In this way we come to some new and interesting problems for quasilinear elliptic equations which are motivated by the need to solve (P). Among other results, we investigate the validity of the Ambrosetti–Rabinowitz condition according to the behavior of g and f. Existence and multiplicity results for (P) are established in several situations.


Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno