Ir al contenido

Documat


On Kato–Ponce and fractional Leibniz

  • Dong Li [1]
    1. [1] Hong Kong University of Science and Technology

      Hong Kong University of Science and Technology

      RAE de Hong Kong (China)

  • Localización: Revista matemática iberoamericana, ISSN 0213-2230, Vol. 35, Nº 1, 2019, págs. 23-100
  • Idioma: inglés
  • DOI: 10.4171/rmi/1049
  • Texto completo no disponible (Saber más ...)
  • Resumen
    • We show that in the Kato–Ponce inequality ∥Js(fg)−fJsg∥p≲∥∂f∥∞∥Js−1g∥p+∥Jsf∥p∥g∥∞, the Jsf term on the right-hand side can be replaced by Js−1∂f. This solves a question raised in Kato–Ponce [14]. We propose a new fractional Leibniz rule for Ds=(−Δ)s/2 and similar operators, generalizing the Kenig–Ponce–Vega estimate [15] to all s>0. We also prove a family of generalized and refined Kato–Ponce type inequalities which include many commutator estimates as special cases. To showcase the sharpness of the estimates at various endpoint cases, we construct several counterexamples. In particular, we show that in the original Kato–Ponce inequality, the L∞-norm on the right-hand side cannot be replaced by the weaker BMO norm. Some divergence-free counterexamples are also included.


Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno