Ir al contenido

Documat


Generic theorems in the theory of cardinal invariants of topological spaces

  • Autores: Alejandro Ramírez Páramo, Jesús F. Tenorio
  • Localización: Applied general topology, ISSN-e 1989-4147, ISSN 1576-9402, Vol. 20, Nº. 1, 2019, págs. 211-222
  • Idioma: inglés
  • DOI: 10.4995/agt.2019.10682
  • Enlaces
  • Resumen
    • The main aim of this paper is to present a technical result, which provides an algorithm to prove several cardinal inequalities and relative versions of cardinal inequalities related. Moreover, we use this result and the weak Hausdorff number, $H^{\ast}$, introduced by Bonanzinga in [Houston J. Math. 39 (3) (2013), 1013-1030], to generalize some upper bounds on the cardinality of topological spaces.

  • Referencias bibliográficas
    • O. T. Alas, More topological cardinal inequalities, Colloq. Math. 65, no. 2 (1993), 165-168. https://doi.org/10.4064/cm-65-2-165-168
    • A. V. Arhangel'skii, A generic theorem in the theory of cardinal invariants of topological spaces, Comment. Math. Univ. Carolin. 36, no....
    • A. V. Arhangel'skii, The power of bicompacta with first axiom of countability, Sov. Math. Dokl. 10 (1969), 951-955.
    • A. Bella, On two cardinal inequalities involving free sequences, Topology Appl. 159 (2012), 3640-3643. https://doi.org/10.1016/j.topol.2012.09.008
    • M. Bonanzinga, D. Stavrova and P. Staynova, Separation and cardinality - Some new results and old questions, Topology Appl. 221 (2017), 556-569....
    • M. Bonanzinga, On the Hausdorff number of a topological space, Houston J. Math. 39, no. 3 (2013), 1013-1030.
    • F. Cammaroto, A. Catalioto and J. Porter, On the cardinality of Hausdorff spaces, Topology Appl. 160 (2013), 137-142. https://doi.org/10.1016/j.topol.2012.10.007
    • F. Cammaroto, A. Catalioto and J. Porter, On the cardinality of Urysohn spaces,
    • A. Charlesworth, On the cardinality of a topological space, Proc. Amer. Math. Soc. 66, no. 1 (1977), 138-142. https://doi.org/10.1090/S0002-9939-1977-0451184-8
    • A. A. Gryzlov, Two theorems on the cardinality of topological spaces, Soviet Math. Dokl. 21 (1980), 506-509.
    • R. E. Hodel, A technique for proving inequalities in cardinal functions, Topology Proc. 4 (1979), 115-120.
    • R. E. Hodel, Arhangel'skii's solution to Alexandroff's problem: A survey, Topology Appl. 153, no. 13 (2006), 2199-2217. https://doi.org/10.1016/j.topol.2005.04.011
    • R. E. Hodel, Cardinal functions I, in: K. Kunen, J. Vaughan (Eds.), Handbook of Set-Theoretic Topology, North-Holland, Amsterdam, 1984, pp....
    • I. Juhász, Cardinal functions in topology- 10 years later, Math. Center Tract. 123, Amsterdam, 1980.
    • S. Shu-Hao, Two new topological cardinal inequalities, Proc. Amer. Math. Soc. 104 (1988), 313-316. https://doi.org/10.2307/2047509
    • S. Spadaro, A short proof of a theorem of Juhász, Topology Appl. 158, no. 16 (2011), 2091-2093. https://doi.org/10.1016/j.topol.2011.06.002
    • S. Willard and U. N. B. Dissanayake, The almost Lindelöf degree, Canad. Math. Bull. 27, no. 4 (1984), 452-455. https://doi.org/10.4153/CMB-1984-070-2

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno