Ir al contenido

Documat


A class of ideals in intermediate rings of continuous functions

  • Autores: Sagarmoy Bag, Sudip Kumar Acharyya, Dhananjoy Mandal
  • Localización: Applied general topology, ISSN-e 1989-4147, ISSN 1576-9402, Vol. 20, Nº. 1, 2019, págs. 109-117
  • Idioma: inglés
  • DOI: 10.4995/agt.2019.10171
  • Enlaces
  • Resumen
    • For any completely regular Hausdorff topological space $X$, an intermediate ring $A(X)$ of continuous functions stands for any ring lying between $C^*(X)$ and $C(X)$. It is a rather recently established fact that if $A(X)\neq C(X)$, then there exist non maximal prime ideals in $A(X)$. We offer an alternative proof of it on using the notion of $z^\circ$ ideals. It is realized that a $P$-space $X$ is discrete if and only if $C(X)$ is identical to the ring of real valued measurable functions defined on the $\sigma $-algebra $\beta (X)$ of all Borel sets in $X$. Interrelation between three classes of ideals viz $z$-ideals, $z^\circ$-ideal and $\mathfrak{Z}_A$-ideals in $A(X)$ are examined. It is proved that with in the family of almost $P$-spaces $X$, each $\mathfrak{Z}_A$-ideal in $A(X)$ is a $z^\circ $-ideal if and only if each $z$-ideal in $A(X)$ is a $z^\circ$-ideal if and only if $A(X)=C(X)$.

  • Referencias bibliográficas
    • S. K. Acharyya and B. Bose, A correspondence between ideals and z-filters for certain rings of continuous functions-some remarks, Topology...
    • H. Azadi,M. Henriksen and E. Momtahan, Some properties of algebra of real valued measurable functions, Acta. Math. Hunger 124 (2009), 15–23....
    • F. Azarpanah, O.A.S. Karamzadeh and R. A. Aliabad, On z◦-ideals of C(X), Fund.Math. 160 (1999), 15–25.
    • F. Azarpanah, O. A. S. Karamzadeh and A. Rezai Aliabad, Onideals consisting entirely of zero Divisors, Communications in Algebra 28 (2000),...
    • S. Bag, S. K. Acharyya and D. Mandal, z◦-ideals in intermediate rings of ordered field valued continuous functions, communicated.
    • B. Banerjee, S. K. Ghosh and M. Henriksen, Unions of minimal prime ideals in rings of continuous functions on a compact spaces, Algebra Universalis...
    • L. H. Byun and S. Watson, Prime and maximals ideal in subrings of C(X) , Topology Appl. 40 (1991), 45–62
    • L. Gillman and M. Jerison, Rings of continuous functions, New York: Van Nostrand Reinhold Co., 1960.
    • L. Gilmann and M. Henriksen, Concerning rings of continuous functions, Trans. Amer. Math. Soc. 77 (1954), 340–362. https://doi.org/10.1090/s0002-9947-1954-0063646-5
    • M. Henriksen and M. Jerison, The space of minimal prime ideals of a commutative ring, Trans. Amer. Math. Soc. 115 (1965), 110–130. https://doi.org/10.1090/s0002-9947-1965-0194880-9
    • W. Murray, J. Sack, S. Watson, P-space and intermediate rings of continuous functions, Rocky Mountain J. Math. 47 (2017), 2757–2775. https://doi.org/10.1216/rmj-2017-47-8-2757
    • J. Kist, Minimal prime ideals in commutative semigroups, Proc. London Math. Soc. 13(1963), 31–50. https://doi.org/10.1112/plms/s3-13.1.31
    • R. Levy, Almost p-spaces, Canad. J. Math. 29 (1977) 284–288.
    • G. Mason, Prime ideals and quotient rings of reduced rings, Math. Japon 34 (1989),941–956.
    • P. Panman, J. Sack and S. Watson, Correspondences between ideals and z-filters for rings of continuous functions between C∗ and C, Commentationes...
    • J. Sack and S. Watson, C and C∗ among intermediate rings, Topology Proceedings 43(2014), 69–82.
    • J. Sack and S. Watson, Characterizing C(X) among intermediate C-rings on X, Topology Proceedings 45 (2015), 301–313.

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno