Letlhogonolo Daddy Molelek, Tanki Motsepa, Chaudry Masood Khalique
In this paper we study a nonlinear multi-dimensional partial differential equation, namely, a generalized second extended (3+1)-dimensional Jimbo-Miwa equation. We perform symmetry reductions of this equation until it reduces to a nonlinear fourth-order ordinary differential equation. The general solution of this ordinary differential equation is obtained in terms of the Weierstrass zeta function. Also travelling wave solutions are derived using the simplest equation method. Finally, the conservation laws of the underlying equation are computed by employing the conservation theorem due to Ibragimov, which include conservation of energy and conservation of momentum laws.
© 2008-2024 Fundación Dialnet · Todos los derechos reservados