Ir al contenido

Documat


Analysis of scientific production based on trending research topics. An Artificial Intelligence case study

  • Bobadilla, Jesús [1] ; Gutiérrez, Abraham [1] ; Patricio, Miguel Ángel [3] ; Bojorque, Rodolfo Xavier [2]
    1. [1] Universidad Politécnica de Madrid

      Universidad Politécnica de Madrid

      Madrid, España

    2. [2] Universidad Politécnica Salesiana

      Universidad Politécnica Salesiana

      Cuenca, Ecuador

    3. [3] Universidad Carlos III, Madrid, España
  • Localización: Revista española de documentación científica, ISSN-e 1988-4621, ISSN 0210-0614, Vol. 42, Nº. 1 (enero-marzo), 2019
  • Idioma: inglés
  • DOI: 10.3989/redc.2019.1.1583
  • Títulos paralelos:
    • Analisis de la producción científica basado en las tendencias en temas de investigación. Un estudio de caso sobre inteligencia artificial
  • Enlaces
  • Resumen
    • español

      La investigación en el campo de la documentación científica nos lleva hacia un procesamiento automático de grandes cantidades de información proveniente de los trabajos publicados por la comunidad científica. Resulta necesario explicar estos procesos y crear sistemas que los lleven a cabo. En este artículo se proporciona: a) Un Sistema de Información diseñado para extraer información científica a partir del texto que proporcionan los artículos publicados, b) Explicaciones de las etapas fundamentales de procesamiento: minería de datos, procesamiento del lenguaje natural, aprendizaje automático, y c) Resultados categorizados y explicados de nuestro caso de estudio: el área Artificial Intelligence. Los resultados de este artículo incluyen: a) Ranking de temas y ranking de áreas de investigación, y b) Comparativa entre cantidad y calidad de los temas y de las áreas de investigación.

    • English

      Scientific documentation research leads to the computation of large amounts of information from published works of the scientific community. It is necessary to explain these processes and create application frameworks. This paper provides the following: a) An Information System designed to extract scientific information from published papers, b) Accurate explanations of the main processing stages including data mining, natural language processing, and machine learning, and c) Categorized and explained results coming from the Artificial Intelligence case study. The results in this paper include the following: a) Topics and research area rankings and b) Quantity versus quality comparisons of topics and research areas.

  • Referencias bibliográficas
    • Abramo, G.; Cicero, T.; D’Angelo, C. (2014). Are the authors of highly cited articles also the most productive ones?. Journal of Informetrics,...
    • Aguillo, I. F.; Ortega, J.; Fernández, M.; Utrilla, A. (2010). Indicators for a webometric ranking of open access repositories. Scientometrics,...
    • Aksnes, D. W. (2003). Characteristics of highly cited papers. Research Evaluation, 12 (3), 159-170.
    • Aksnes, D. W.; Sivertsen, G. (2004). The effect of highly cited papers on national citation indicators. Scientometrics, 59 (2), 213-224.
    • Altszyler, E.; Sigman, M.; Slezak, D. F. (2016). Comparative study of LSA vs Word2vec embeddings in small corpora: a case study in dreams...
    • Anicic, K.; Divjac, B.; Arbanas, K. (2016). Preparing ICT Graduates for Real-World Challenges: Results of a Meta-Analysis. IEEE Transactions...
    • Bleu, D.M.; Ng, A.Y., Jordan, M.I. (2003). Latent dirichlet allocation. Journal of Machine Learning Research, 3, 993-1022.
    • Bobadilla, J.; Bojorque, R.; Hernando, A.; Hurtado, R. (2017). Recommender systems clustering using Bayesian non negative matrix factorization....
    • Bobadilla, J.; Ortega, F.; Hernando, A.; Gutierrez, A. (2013). Recommender Systems Survey. Knowledge Based Systems, 46, 109-132.
    • Bornmann, L.; Mutz, R. (2011). Further steps towards an ideal method of measuring citation performance: the avoidance of citation (ratio)...
    • Haustein, S.; Peters, I.; Bar-Ilan, J.; Priem, J.; Shema, H.; Terliesner, J. (2014). Coverage and adoption of altmetrics sources in the bibliometric...
    • Hayati, Z. (2009). Correlation between quality and quantity in scientific production: A case study of Iranian organizations from 1997 to 2006....
    • Hernando, A.; Bobadilla, J.; Ortega, F. (2016). A non negative matrix factorization for collaborative filtering recommender systems based...
    • Hindle, A.; Bird, C.; Zimmermann, T.; Nagappan, N. (2015). Do topics make sense to managers and developers? Empirical Software Engineering,...
    • Karlsson, A.; Hammarfelt, B.; Steinhauer, H.J.; Nolin, J. (2014). Modeling uncertainty in bibliometrics and information retrieval: an information...
    • Kaya, M.; Cetin, E.; Socery, A. (2010). Introduction to Webometrics: quantitative Web research for the ranking of world universities; research...
    • Khan, B.S.; Niazi, M.A. (2017). Emerging Topics in Internet Technology: A Complex Networks Approach, arXiv. https://arxiv.org/abs/1708.00578v1
    • Lis-Gutierrez, J.P.; Gaitan-Angulo, M.; Robayo, P.V.; Aguilera-Hernandez, D.; Viloria, A. (2017). Academic production patterns in public administration:...
    • Lu, K.; Cai, X.; Ajiferuke, I.; Wolfram, D. (2017). Vocabulary size and its effect on topic representation. Information Processing and Management,...
    • Manolopoulus, Y.; Katsaros, D. (2017). Metrics and rankings: Myths and fallacies. Communications in computer and information science, 706,...
    • Martín-Martín, A.; Orduna-Malea, E.; Ayllón, J:M.; López- Cózar, E.D. (2016). A two-sided academic landscape: snapshot of highly-cited documents...
    • Mingers, J.; Leydesdorff, L. (2015). A review of theory and practice in scientometrics. European Journal of Operational Research, 246 (1),...
    • Mustafee, N., Katsaliaki, K., Fishwick, P., (2014). Exploring the modelling and simulation knowledge base through journal co-citation analysis....
    • Naili, M.; Chaibi, A.H.; Ghezala, H. (2017). Comparative study of word embedding methods in topic segmentation. Procedia computer science,...
    • Nedra, I.; Chaibi, A. H.; Ahmed, M. B. (2015). New scientometric indicator for the qualitative evaluation of scientific production. New Library...
    • Nejati, A.; Hosseini Jenab, S.M. (2010). A two-dimensional approach to evaluate the scientific production of countries (case study: the basic...
    • Orduna-Malea, E.; Martín-Martín, A.; Delgado López-Cózar, E. (2017). Google Scholar as a source for scholarly evaluation: a bibliographic...
    • Ortoll, E.; Canals, A.; García, M.; Cobarsí, J. (2014). Main parameters for the study of scientific collaboration in big science. Revista...
    • Ravikumar, S.; Agrahari, A.; Singh, S.N. (2015). Mapping the intellectual structure of scientometrics: a co-word analysis of the journal Scientometrics....
    • Sun, S.; Luo, Ch.; Chen, J. (2017). A review of natural language processing techniques for opinion mining systems. Information fusion, 36,...
    • Wang, S.; Koopman, R. (2017). Clustering articles based on semantic similarity. Scientometrics, 111 (2), 1017- 1031.
    • Xue, H.J.; Dai, X.Y.; Zhang, J.; Huang, S. (2017). Deep matrix factorization models for recommender systems, IJCAI, pp. 3203-3209. Melbourne,...
    • Yazdani, K; Nedjat, S; Rahimi-Movaghar, A; Ghalichee, L; Khalili, M. (2015). Scientometrics: Review of concepts, applications, and indicators....
    • Yu, D.J. (2015). A scientometrics review on aggregation operator research. Scientometrics, 105 (1), 115-133.

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno