Ir al contenido

Documat


An Introduction to the Theory of Local Zeta Functions from Scratch

  • León-Cardenal, Edwin [1] ; Zúñiga-Galindo, W. A. [2]
    1. [1] Mathematics Research Center

      Mathematics Research Center

      México

    2. [2] Instituto Politécnico Nacional,Unidad Querétaro, México.
  • Localización: Integración: Temas de matemáticas, ISSN 0120-419X, Vol. 37, Nº. 1, 2019 (Ejemplar dedicado a: Revista Integración, temas de matemáticas), págs. 45-76
  • Idioma: inglés
  • DOI: 10.18273/revint.v37n1-2019004
  • Títulos paralelos:
    • Una introducción a la teoría de las funciones Zeta locales para principiantes
  • Enlaces
  • Resumen
    • español

      En este artículo panorámico brindamos una introducción a la teoría de las funciones zeta locales p-ádicas para principiantes. También se presenta una revisión extensiva a la literatura especializada sobre funciones zeta locales y sus conexiones con otros campos de las matemáticas y la física.

    • English

      This survey article aims to provide an introduction to the theory of local zeta functions in the p-adic framework for beginners. We also give an extensive guide to the current literature on local zeta functions and its connections with other fields in mathematics and physics.

  • Referencias bibliográficas
    • Citas [1] Albeverio S., Khrennikov A. and Shelkovich V.M., “Theory of p-adic distributions: linear and nonlinear models”, in London Mathematical...
    • [2] Aref’eva I., Dragović B.G. and Volovich I.V., “On the adelic string amplitudes”, Phys. Lett. B 209 (1988), No. 4, 445–450.
    • [3] Arnold V.I., Gusein-Zade S.M. and Varchenko A.N., Singularities of differentiable maps. Vol. II. Monodromy and asymptotics of integrals....
    • [4] Atiyah M.F., “Resolution of Singularities and Division of Distributions”, Comm. pure Appl. Math. 23 (1970), 145–150.
    • [5] Belkale P. and Brosnan P., “Periods and Igusa local zeta functions”, Int. Math. Res. Not. 49 (2003), 2655–2670.
    • [6] Bernstein I.N., “Modules over the ring of differential operators; the study of fundamental solutions of equations with constant coefficients”,...
    • [7] Bleher P.M., “Analytic continuation of massless Feynman amplitudes in the Schwartz space S′”, Rep. Math. Phys. 19 (1984), No. 1, 117–142.
    • [8] Bocardo-Gaspar M., García-Compeán H. and Zúñiga-Galindo W.A., “Regularization of p-adic String Amplitudes, and Multivariate Local Zeta...
    • [9] Bocardo-Gaspar M., García-Compeán H. and Zúñiga-Galindo W.A., “ On p-Adic string amplitudes in the limit p approaches to one”, J. High...
    • [10] Bogner C. and Weinzierl S., “Periods and Feynman integrals”, J. Math. Phys. 50 (2009), No. 4, 042302, 16 pp.
    • [11] Bollini C.G., Giambiagi J.J. and González Domínguez A., “Analytic regularization and the divergences of quantum field theories”, Il Nuovo...
    • [12] Brekke L., Freund P.G.O., Olson M. and Witten E., “Non-Archimedean string dynamics”, Nuclear Phys. B 302 (1988), No. 3, 365–402.
    • [13] Brekke L. and Freund P.G.O., “p-adic numbers in physics”, Phys. Rep. 233 (1993), No. 1, 1–66.
    • [14] Denef J., “Report on Igusa’s Local Zeta Function”, Séminaire Bourbaki 43 (1990–1991), exp. 741; Astérisque 201–202–203, 359–386 (1991).
    • [15] Denef J. and Loeser F., “Caractéristiques D’Euler-Poincaré, Fonctions Zeta locales et modifications analytiques”, J. Amer. Math. Soc....
    • [16] Denef J. and Loeser F., “Motivic Igusa zeta functions”, J. Algebraic Geom. 7 (1998), No. 3, 505–537.
    • [17] Denef J. and Loeser F., “On some rational generating series occuring in arithmetic geometry”, in Geometric aspects of Dwork theory Vol...
    • [18] Frampton P.H. and Okada Y., “p-adic string N-point function”, Phys. Rev. Lett. 60 (1988), No. 6, 484–486.
    • [19] Freund P.G.O. and Olson M., “Non-Archimedean strings”, Phys. Lett. B 199 (1987), No. 2, 186–190.
    • [20] Freund P.G.O. and Witten E., “Adelic string amplitudes”, Phys. Lett. B 199 (1987), No. 2, 191–194.
    • [21] Gel’fand I.M. and Shilov G.E., Generalized Functions, Academic Press, New York and London, 1977.
    • [22] Ghoshal D., “Noncommutative p-tachyon”, Proc. Steklov Inst. Math. 245 (2004), No. 2, 83–90.
    • [23] Ghoshal D., “p-adic string theories provide lattice discretization to the ordinary string worldsheet”, Phys. Rev. Lett. 97 (2006), 151601.
    • [24] Ghoshal D. and Sen A., “Tachyon condensation and brane descent relations in p-adic string theory”, Nucl. Phys. B 584 (2000), No. 1-2,...
    • [25] Gouvêa F., p-adic numbers: An introduction, Universitext, Springer-Verlag, Berlin, 1997.
    • [26] Halmos P., Measure Theory, D. Van Nostrand Company Inc., New York, 1950.
    • [27] Hloušek Z. and Spector D., “p-adic string theories”, Ann. Physics 189 (1989), No. 2, 370–431.
    • [28] Igusa J.-I., Lectures on forms of higher degree, Tata Institute of Fundamental Research, Lectures on Mathematics and Physics vol. 59,...
    • [29] Igusa J.-I., “A stationary phase formula for p-adic integrals and its applications”, in Algebraic geometry and its applications (West...
    • [30] Igusa J.-I., “On local zeta functions” [translation of S¯ugaku 46 (1994), no. 1, 2338], in Selected papers on number theory and algebraic...
    • [31] Igusa J.-I., “An introduction to the theory of local zeta functions”, in AMS/IP Studies in Advanced Mathematics, 14, American Mathematical...
    • [32] Katok S., “p-adic analysis compared with real”, in Student Mathematical Library, 37, American Mathematical Society, Providence, RI; Mathematics...
    • [33] Khrennikov A., Kozyrev S. and Zúñiga-Galindo W.A., “Ultrametric Pseudodifferential Equations and Applications”, in Encyclopedia of Mathematics...
    • [34] Kimura T., Introduction to prehomogeneous vector spaces, Translated from the 1998 Japanese original by Makoto Nagura and Tsuyoshi Niitani...
    • [35] Koblitz N., “p-adic Numbers, p-adic Analysis and Zeta functions”, Second edition, in Graduate Texts in Mathematics, 58, Springer-Verlag,...
    • [36] Lang S., “Real and functional analysis”, Third edition, in Graduate Texts in Mathematics, 142, Springer-Verlag, New York (1993), xiv+580...
    • [37] Lerner È.Y., “Feynman integrals of a p-adic argument in a momentum space. I. Convergence”, Theoret. and Math. Phys. 102 (1995), No. 3,...
    • [38] Lerner È. Y., “Feynman integrals of a p-adic argument in a momentum space. II. Explicit formulas”, Theoret. and Math. Phys. 104 (1995),...
    • [39] Lerner È. Y. and Missarov M. D., “p-adic Feynman and string amplitudes”, Comm. Math. Phys. 121 (1989), No. 1, 35–48.
    • [40] Lin S., “Ideal-theoretic strategies for asymptotic approximation of marginal likelihood integrals”, J. Algebr. Stat. 8 (2017), No. 1,...
    • [41] Loeser F., “Fonctions zêta locales d’Igusa à plusieurs variables, intégration dans les fibres, et discriminants”, Ann. Sci. École Norm....
    • [42] Marcolli M., Feynman motives, World Scientific Publishing, NJ, 2010.
    • [43] Mendoza-Martínez M.L., Vallejo J.A. and Zúñiga-Galindo W.A., “Acausal quantum theory for non-Archimedean scalar fields”, arXiv:1805.08613.
    • [44] Meuser D., “A survey of Igusa’s local zeta function”, Amer. J. Math. 138 (2016), No. 1, 149–179.
    • [45] Nicaise J., “An introduction to p-adic and motivic zeta functions and the monodromy conjecture”, in Algebraic and analytic aspects of...
    • [46] Robert A., A course in p-adic Analysis, Springer-Verlag, New York, 2000.
    • [47] Schikhof W.H., “Ultrametric calculus: An introduction to p-adic analysis”, in Cambridge Studies in Advanced Mathematics, 4, Cambridge...
    • [48] Smirnov V.A., “Renormalization in p-adic quantum field theory”, Modern Phys. Lett. A 6 (1991), No. 15, 1421–1427.
    • [49] Smirnov V.A., “Calculation of general p-adic Feynman amplitude”, Comm. Math. Phys. 149 (1992), No. 3, 623–636.
    • [50] Speer E.R., “Generalized Feynman amplitudes”, in Annals of Mathematics Studies vol. 62, Princeton University Press (1969), vi+120...
    • [51] Speer E.R., “Ultraviolet and infrared singularity structure of generic Feynman amplitudes”, Ann. Inst. H. Poincaré Sect. A (N.S.) 23...
    • [52] Spokoiny B.L., “Quantum Geometry of Non-archimedean Particles and Strings”, Phys. Lett. B 208 (1988), No. 3-4, 401–406.
    • [53] Taibleson M.H., Fourier analysis on local fields, Princeton University Press, Tokyo, 1975.
    • [54] Varadarajan V.S., Reflections on quanta, symmetries, and supersymmetries, Springer, New York, 2011.
    • [55] VeysW., “Arc spaces, motivic integration and stringy invariants”, in Singularity theory and its applications, Adv. Stud. Pure Math.,...
    • [56] Vladimirov V.S., Volovich I.V., and Zelenov E.I., “p-adic analysis and mathematical physics”, in Series on Soviet and East European Mathematics...
    • [57] Volovich I.V., “p-adic string”, Classical Quantum Gravity 4 (1987), No. 4, L83–L87.
    • [58] Watanabe S., “Algebraic geometry and statistical learning theory”, in Cambridge Monographs on Applied and Computational Mathematics,...
    • [59] Weil A., “Sur la formule de Siegel dans la théorie des groupes classiques”, Acta Math. 113 (1965), 1–87.
    • [60] Zúñiga-Galindo W.A., “Igusa’s local zeta functions of semiquasihomogeneous polynomials”, Trans. Amer. Math. Soc. 353 (2001), No. 8, 3193–3207.
    • [61] Zúñiga-Galindo W.A., “Local zeta functions and Newton polyhedra”, Nagoya Math. J. 172 (2003), 31–58.
    • [62] Zúñiga-Galindo W.A., “Pseudodifferential equations over non-Archimedean spaces”, in Lectures Notes in Mathematics vol. 2174, Springer,...

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno